{"title":"Abnormal expression of long non-coding RNA FGD5-AS1 affects the development of ovarian cancer through regulating miR-107/RBBP6 axis.","authors":"Wen Zhang, Jianguo Shi, Guoyan Liu","doi":"10.4103/cjop.CJOP-D-22-00084","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) are important players in cancer development. LncRNA FGD5-AS1 has been reported as a potential oncogene in ovarian cancer (OC). The present paper focused on the action mechanism of FGD5-AS1 in OC. Clinical OC samples were collected for expression analyses of FGD5-AS1, RBBP6, and miR-107. The expression of FGD5-AS1, RBBP6, and miR-107 in OC cells was altered by transfection. OC cell proliferation was assessed by MTT and colony formation assays, and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with OC cell supernatants by matrigel angiogenesis assay. The interactions among FGD5-AS1, miR-107, and RBBP6 were detected by luciferase reporter assay. FGD5-AS1 and RBBP6 were strongly expressed and miR-107 was poorly expressed in clinical OC samples and OC cell lines. FGD5-AS1 or RBBP6 overexpression in Hey and SKOV3 cells could potentiate OC cell proliferation and HUVEC angiogenesis, while FGD5-AS1 or RBBP6 knockdown in OC cells inhibited the above cellular processes. FGD5-AS1 targeted miR-107 to positively regulate RBBP6 expression. Additionally, miR-107 overexpression or RBBP6 knockdown in SKOV3 cells partially reversed the FGD5-AS1-dependent stimulation of OC cell proliferation and HUVEC angiogenesis. FGD5-AS1 may act as a promoter of OC via miR-107/RBBP6 axis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-22-00084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Long non-coding RNAs (lncRNAs) are important players in cancer development. LncRNA FGD5-AS1 has been reported as a potential oncogene in ovarian cancer (OC). The present paper focused on the action mechanism of FGD5-AS1 in OC. Clinical OC samples were collected for expression analyses of FGD5-AS1, RBBP6, and miR-107. The expression of FGD5-AS1, RBBP6, and miR-107 in OC cells was altered by transfection. OC cell proliferation was assessed by MTT and colony formation assays, and angiogenesis of human umbilical vein endothelial cells (HUVECs) cultured with OC cell supernatants by matrigel angiogenesis assay. The interactions among FGD5-AS1, miR-107, and RBBP6 were detected by luciferase reporter assay. FGD5-AS1 and RBBP6 were strongly expressed and miR-107 was poorly expressed in clinical OC samples and OC cell lines. FGD5-AS1 or RBBP6 overexpression in Hey and SKOV3 cells could potentiate OC cell proliferation and HUVEC angiogenesis, while FGD5-AS1 or RBBP6 knockdown in OC cells inhibited the above cellular processes. FGD5-AS1 targeted miR-107 to positively regulate RBBP6 expression. Additionally, miR-107 overexpression or RBBP6 knockdown in SKOV3 cells partially reversed the FGD5-AS1-dependent stimulation of OC cell proliferation and HUVEC angiogenesis. FGD5-AS1 may act as a promoter of OC via miR-107/RBBP6 axis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.