{"title":"Irbesartan eases lipopolysaccharide-induced lung injury <i>In Vitro</i> and <i>In Vivo</i>.","authors":"Zhongyuan Zhang, Wei Wang","doi":"10.4103/cjop.CJOP-D-23-00131","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is classified as a devastating pulmonary disorder contributing to significant incidence and fatality rate. Irbesartan (IRB) is an angiotensin II receptor blocker that has been proposed to protect against oleic acid-induced ALI. To this end, the current study is concentrated on ascertaining the role of IRB in ALI and figuring out the probable action mechanism. First, cell counting kit-8 (CCK-8) appraised the viability of human pulmonary microvascular endothelial cells (HPMVECs) exposed to ascending concentrations of IRB. HPMVEC injury model and a mouse model of ALI induced by lipopolysaccharide (LPS) were pretreated by IRB. In vitro, cell viability was estimated by CCK-8 assay, and lactate dehydrogenase (LDH) release was tested by LDH assay kit. Enzyme-linked immunosorbent assay (ELISA) and Western blotting estimated the expression levels of inflammatory factors. Fluorescein isothiocyanate-dextran was used to assess HPMVEC permeability. Western blotting examined the expression of adherent and tight junction proteins. In vivo, hematoxylin and eosin staining evaluated lung tissue damage and lung wet/dry (W/D) weight was measured. ELISA analyzed the levels of inflammatory factors in the serum and bronchoalveolar lavage fluid (BALF), and Western blotting examined the expression of inflammatory factors. The total cell, neutrophil, and macrophage numbers in BALF were determined using a cell counter. Lung capillary permeability was assayed by Evans blue albumin and total protein concentration in BALF was measured using bicinchoninic acid method. Immunofluorescence assay and Western blotting examined the expression of adherent and tight junction proteins in lung tissues. It was observed that IRB dose-dependently enhanced the viability while reduced LDH release, inflammatory response as well as permeability in LPS-challenged HPMVECs in vitro. In addition, LPS-stimulated lung tissue damage, pulmonary edema, inflammatory response as well as lung capillary permeability in vivo were all reversed following IRB treatment. Collectively, IRB treatment might elicit protective behaviors against LPS-triggered ALI.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-23-00131","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is classified as a devastating pulmonary disorder contributing to significant incidence and fatality rate. Irbesartan (IRB) is an angiotensin II receptor blocker that has been proposed to protect against oleic acid-induced ALI. To this end, the current study is concentrated on ascertaining the role of IRB in ALI and figuring out the probable action mechanism. First, cell counting kit-8 (CCK-8) appraised the viability of human pulmonary microvascular endothelial cells (HPMVECs) exposed to ascending concentrations of IRB. HPMVEC injury model and a mouse model of ALI induced by lipopolysaccharide (LPS) were pretreated by IRB. In vitro, cell viability was estimated by CCK-8 assay, and lactate dehydrogenase (LDH) release was tested by LDH assay kit. Enzyme-linked immunosorbent assay (ELISA) and Western blotting estimated the expression levels of inflammatory factors. Fluorescein isothiocyanate-dextran was used to assess HPMVEC permeability. Western blotting examined the expression of adherent and tight junction proteins. In vivo, hematoxylin and eosin staining evaluated lung tissue damage and lung wet/dry (W/D) weight was measured. ELISA analyzed the levels of inflammatory factors in the serum and bronchoalveolar lavage fluid (BALF), and Western blotting examined the expression of inflammatory factors. The total cell, neutrophil, and macrophage numbers in BALF were determined using a cell counter. Lung capillary permeability was assayed by Evans blue albumin and total protein concentration in BALF was measured using bicinchoninic acid method. Immunofluorescence assay and Western blotting examined the expression of adherent and tight junction proteins in lung tissues. It was observed that IRB dose-dependently enhanced the viability while reduced LDH release, inflammatory response as well as permeability in LPS-challenged HPMVECs in vitro. In addition, LPS-stimulated lung tissue damage, pulmonary edema, inflammatory response as well as lung capillary permeability in vivo were all reversed following IRB treatment. Collectively, IRB treatment might elicit protective behaviors against LPS-triggered ALI.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.