Dayu Tan, Haijun Jiang, Haitao Li, Ying Xie, Yansen Su
{"title":"Prediction of drug-protein interaction based on dual channel neural networks with attention mechanism.","authors":"Dayu Tan, Haijun Jiang, Haitao Li, Ying Xie, Yansen Su","doi":"10.1093/bfgp/elad037","DOIUrl":null,"url":null,"abstract":"<p><p>The precise identification of drug-protein inter action (DPI) can significantly speed up the drug discovery process. Bioassay methods are time-consuming and expensive to screen for each pair of drug proteins. Machine-learning-based methods cannot accurately predict a large number of DPIs. Compared with traditional computing methods, deep learning methods need less domain knowledge and have strong data learning ability. In this study, we construct a DPI prediction model based on dual channel neural networks with an efficient path attention mechanism, called DCA-DPI. The drug molecular graph and protein sequence are used as the data input of the model, and the residual graph neural network and the residual convolution network are used to learn the feature representation of the drug and protein, respectively, to obtain the feature vector of the drug and the hidden vector of protein. To get a more accurate protein feature vector, the weighted sum of the hidden vector of protein is applied using the neural attention mechanism. In the end, drug and protein vectors are concatenated and input into the full connection layer for classification. In order to evaluate the performance of DCA-DPI, three widely used public data, Human, C.elegans and DUD-E, are used in the experiment. The evaluation metrics values in the experiment are superior to other relevant methods. Experiments show that our model is efficient for DPI prediction.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"286-294"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad037","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise identification of drug-protein inter action (DPI) can significantly speed up the drug discovery process. Bioassay methods are time-consuming and expensive to screen for each pair of drug proteins. Machine-learning-based methods cannot accurately predict a large number of DPIs. Compared with traditional computing methods, deep learning methods need less domain knowledge and have strong data learning ability. In this study, we construct a DPI prediction model based on dual channel neural networks with an efficient path attention mechanism, called DCA-DPI. The drug molecular graph and protein sequence are used as the data input of the model, and the residual graph neural network and the residual convolution network are used to learn the feature representation of the drug and protein, respectively, to obtain the feature vector of the drug and the hidden vector of protein. To get a more accurate protein feature vector, the weighted sum of the hidden vector of protein is applied using the neural attention mechanism. In the end, drug and protein vectors are concatenated and input into the full connection layer for classification. In order to evaluate the performance of DCA-DPI, three widely used public data, Human, C.elegans and DUD-E, are used in the experiment. The evaluation metrics values in the experiment are superior to other relevant methods. Experiments show that our model is efficient for DPI prediction.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.