Fat fraction and R2 * values of various liver masses: Initial experience with 6-point Dixon method on a 3T MRI system

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2023-08-17 DOI:10.1016/j.ejro.2023.100519
Taichi Kitagawa , Kazuto Kozaka , Takashi Matsubara , Tetsuya Wakayama , Atsushi Takamatsu , Tomohiro Kobayashi , Kenichiro Okumura , Kotaro Yoshida , Norihide Yoneda , Azusa Kitao , Satoshi Kobayashi , Toshifumi Gabata , Osamu Matsui , Jay P. Heiken
{"title":"Fat fraction and R2 * values of various liver masses: Initial experience with 6-point Dixon method on a 3T MRI system","authors":"Taichi Kitagawa ,&nbsp;Kazuto Kozaka ,&nbsp;Takashi Matsubara ,&nbsp;Tetsuya Wakayama ,&nbsp;Atsushi Takamatsu ,&nbsp;Tomohiro Kobayashi ,&nbsp;Kenichiro Okumura ,&nbsp;Kotaro Yoshida ,&nbsp;Norihide Yoneda ,&nbsp;Azusa Kitao ,&nbsp;Satoshi Kobayashi ,&nbsp;Toshifumi Gabata ,&nbsp;Osamu Matsui ,&nbsp;Jay P. Heiken","doi":"10.1016/j.ejro.2023.100519","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To assess the feasibility of the 6-point Dixon method for evaluating liver masses. We also report our initial experience with the quantitative values in various liver masses on a 3T system.</p></div><div><h3>Materials and methods</h3><p>Of 251 consecutive patients for whom 6-point Dixon was employed in abdominal magnetic resonance imaging scans between October 2020 and October 2021, 117 nodules in 117 patients with a mass diameter of more than 1 cm were included in the study. Images for measuring the proton density fat fraction (PDFF) and R2 * values were obtained using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation-quantitative technique for liver imaging. Two radiologists independently measured PDFF (%) and R2 * (Hz). Inter-reader agreement and the differences between readers were examined using intra-class correlation coefficient (ICC) and the Bland-Altman method, respectively. PDFF and R2 * values in differentiating liver masses were examined.</p></div><div><h3>Results</h3><p>The masses included hepatocellular carcinoma (n = 59), cyst (n = 20), metastasis (n = 14), hemangioma (n = 8), and others (n = 16). The ICCs for the region of interest (mm<sup>2</sup>), PDFF, and R2 * were 0.988 (95 % confidence interval (CI): 0.983, 0.992), 0.964 (95 % CI: 0.949, 0.975), and 0.962 (95 % CI: 0.941, 0.975), respectively. The differences of measurements between the readers showed that 5.1 % (6/117) and 6.0% (7/117) for PDFF and R2 * , respectively, were outside the 95 % CI.</p></div><div><h3>Conclusion</h3><p>Our observation indicates that the 6-point Dixon method is applicable to liver masses.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/59/main.PMC10440393.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235204772300045X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To assess the feasibility of the 6-point Dixon method for evaluating liver masses. We also report our initial experience with the quantitative values in various liver masses on a 3T system.

Materials and methods

Of 251 consecutive patients for whom 6-point Dixon was employed in abdominal magnetic resonance imaging scans between October 2020 and October 2021, 117 nodules in 117 patients with a mass diameter of more than 1 cm were included in the study. Images for measuring the proton density fat fraction (PDFF) and R2 * values were obtained using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation-quantitative technique for liver imaging. Two radiologists independently measured PDFF (%) and R2 * (Hz). Inter-reader agreement and the differences between readers were examined using intra-class correlation coefficient (ICC) and the Bland-Altman method, respectively. PDFF and R2 * values in differentiating liver masses were examined.

Results

The masses included hepatocellular carcinoma (n = 59), cyst (n = 20), metastasis (n = 14), hemangioma (n = 8), and others (n = 16). The ICCs for the region of interest (mm2), PDFF, and R2 * were 0.988 (95 % confidence interval (CI): 0.983, 0.992), 0.964 (95 % CI: 0.949, 0.975), and 0.962 (95 % CI: 0.941, 0.975), respectively. The differences of measurements between the readers showed that 5.1 % (6/117) and 6.0% (7/117) for PDFF and R2 * , respectively, were outside the 95 % CI.

Conclusion

Our observation indicates that the 6-point Dixon method is applicable to liver masses.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种肝脏肿块的脂肪分数和R2*值:3T MRI系统上6点Dixon法的初步经验
目的评价6点Dixon法评估肝脏肿块的可行性。我们还报告了我们在3T系统上对各种肝脏肿块的定量值的初步经验。材料和方法在2020年10月至2021年10月期间,在251名连续的腹部磁共振成像扫描患者中,117名肿块直径超过1厘米的患者中有117个结节被纳入研究。使用具有回声不对称的水和脂肪的迭代分解和用于肝脏成像的最小二乘估计定量技术来获得用于测量质子密度脂肪分数(PDFF)和R2*值的图像。两名放射科医生分别测量PDFF(%)和R2*(Hz)。分别使用类内相关系数(ICC)和Bland-Altman方法检验读者之间的一致性和读者之间的差异。检查PDFF和R2*值在鉴别肝脏肿块中的作用。结果肿块包括肝细胞癌(n=59)、囊肿(n=20)、转移瘤(n=14)、血管瘤(n=8)和其他(n=16)。感兴趣区域(mm2)、PDFF和R2*的ICCs分别为0.988(95%置信区间(CI):0.983、0.992)、0.964(95%CI:0.949、0.975)和0.962(95%CI=0.941、0.975。读者之间的测量差异显示,PDFF和R2*分别有5.1%(6/117)和6.0%(7/117)在95%置信区间之外。结论我们的观察表明,6点Dixon方法适用于肝脏肿块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1