{"title":"Tire-rubber related pollutant 6-PPD quinone: A review of its transformation, environmental distribution, bioavailability, and toxicity.","authors":"Xin Hua, Dayong Wang","doi":"10.1016/j.jhazmat.2023.132265","DOIUrl":null,"url":null,"abstract":"<p><p>The antioxidant 6-PPD has been widely used to prevent cracking and thermal oxidative degradation and to extend the service life of tire rubber. 6-PPD quinone (6-PPDQ) is formed via the reaction of 6-PPD with O<sub>3</sub>. Due to its acute lethality in coho salmon, 6-PPDQ has become an emerging pollutant of increasing concern. In this review, we provide a critical overview of the generation, environmental distribution, bioavailability, and potential toxicity of 6-PPDQ. The transformation pathways from 6-PPD to 6-PPDQ include the N-1,3-dimethylbutyl-N-phenyl quinone diamine (QDI), intermediate phenol, and semiquinone radical pathways. 6-PPDQ has been frequently detected in water, dust, air particles, soil, and sediments, indicating its large-scale and potentially global pollution trend. 6-PPDQ is bioavailable to both aquatic animals and mammals and acute exposure to 6-PPDQ can be lethal to some organisms. Exposure to 6-PPDQ at environmentally relevant concentrations could induce several types of toxicity, including neurotoxicity, intestinal toxicity, and reproductive toxicity. This review also identifies and discusses knowledge gaps and research needs for the study of 6-PPDQ. This review facilitates a better understanding of the environmental occurrence and exposure risk of 6-PPDQ.</p>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"459 ","pages":"132265"},"PeriodicalIF":12.2000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2023.132265","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The antioxidant 6-PPD has been widely used to prevent cracking and thermal oxidative degradation and to extend the service life of tire rubber. 6-PPD quinone (6-PPDQ) is formed via the reaction of 6-PPD with O3. Due to its acute lethality in coho salmon, 6-PPDQ has become an emerging pollutant of increasing concern. In this review, we provide a critical overview of the generation, environmental distribution, bioavailability, and potential toxicity of 6-PPDQ. The transformation pathways from 6-PPD to 6-PPDQ include the N-1,3-dimethylbutyl-N-phenyl quinone diamine (QDI), intermediate phenol, and semiquinone radical pathways. 6-PPDQ has been frequently detected in water, dust, air particles, soil, and sediments, indicating its large-scale and potentially global pollution trend. 6-PPDQ is bioavailable to both aquatic animals and mammals and acute exposure to 6-PPDQ can be lethal to some organisms. Exposure to 6-PPDQ at environmentally relevant concentrations could induce several types of toxicity, including neurotoxicity, intestinal toxicity, and reproductive toxicity. This review also identifies and discusses knowledge gaps and research needs for the study of 6-PPDQ. This review facilitates a better understanding of the environmental occurrence and exposure risk of 6-PPDQ.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.