[CT texture analysis for predicting pseudoprogression in metastatic clear cell renal cell carcinoma during PD-1 inhibitor therapy].

B J Zheng, W J Xu, L D Zhao, C M Xu, H L Li
{"title":"[CT texture analysis for predicting pseudoprogression in metastatic clear cell renal cell carcinoma during PD-1 inhibitor therapy].","authors":"B J Zheng,&nbsp;W J Xu,&nbsp;L D Zhao,&nbsp;C M Xu,&nbsp;H L Li","doi":"10.3760/cma.j.cn112138-20230301-00123","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To evaluate the effectiveness of enhanced CT texture feature analysis in predicting pseudoprogression in patients with metastatic clear cell renal cell carcinoma (mccRCC) undergoing programmed cell death protein 1 (PD-1) inhibitor therapy. <b>Methods:</b> A cross-sectional study. Data from 32 patients with mccRCC were retrospectively collected who received monotherapy with PD-1 inhibitors after standard treatment failure at Henan Cancer Hospital, from June 2015 to January 2021. Clinical information and enhanced CT images were analyzed to assess target lesion response. The lesions were divided into pseudoprogression and non-pseudoprogression groups. Manual segmentation of target lesions was performed using ITK-Snap software on baseline enhanced CT, and texture analysis was conducted using A.K. software to extract feature parameters. Differences in texture features between the pseudoprogression and non-pseudoprogression groups were analyzed using univariate and multivariate logistic regression. A predictive model for pseudoprogression was constructed, and its performance was evaluated using ROC curve analysis. <b>Results:</b> A total of 32 patients with 89 lesions were included in the study. Statistical analysis revealed significant differences in seven texture features between the pseudoprogression and non-pseudoprogression groups. These features included\"original_ngtdm_Strength\"(0.49 vs. -0.61,<i>P</i>=0.006), \"wavelet-HLH_glszm_ZonePercentage\"(0.67 vs. -0.22,<i>P</i>=0.024),\"wavelet-LHL_ngtdm_Strength\"(1.20 vs. -0.51,<i>P</i>=0.002), \"wavelet-HLL_gldm_LargeDependenceEmphasis\"(-0.84 vs. 0.19,<i>P</i>=0.002), \"wavelet-HLH_glcm_Id\" (-0.30 vs. 0.43,<i>P</i>=0.037),\"wavelet- HLH_glrlm_RunPercentage\"(0.45 vs. -0.01,<i>P</i>=0.032),\"wavelet-LHH_firstorder_Skewness\"(0.25 vs. -0.27, <i>P</i>=0.011). Based on these features, a pseudoprogression prediction model was developed with a <i>P</i>-value of 0.000 2 and an odds ratio of 0.045 (95%<i>CI</i> 0.009-0.227). The model exhibited a high predictive performance with an AUC of 0.907 (95%<i>CI</i> 0.817-0.997) according to ROC curve analysis. <b>Conclusions:</b> Enhanced CT texture feature analysis shows promise in predicting lesion pseudoprogression in patients with metastatic ccRCC undergoing PD-1 inhibitor therapy. The developed predictive model based on texture features demonstrates good performance and may assist in evaluating treatment response in these patients.</p>","PeriodicalId":24000,"journal":{"name":"Zhonghua nei ke za zhi","volume":"62 9","pages":"1114-1120"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua nei ke za zhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112138-20230301-00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To evaluate the effectiveness of enhanced CT texture feature analysis in predicting pseudoprogression in patients with metastatic clear cell renal cell carcinoma (mccRCC) undergoing programmed cell death protein 1 (PD-1) inhibitor therapy. Methods: A cross-sectional study. Data from 32 patients with mccRCC were retrospectively collected who received monotherapy with PD-1 inhibitors after standard treatment failure at Henan Cancer Hospital, from June 2015 to January 2021. Clinical information and enhanced CT images were analyzed to assess target lesion response. The lesions were divided into pseudoprogression and non-pseudoprogression groups. Manual segmentation of target lesions was performed using ITK-Snap software on baseline enhanced CT, and texture analysis was conducted using A.K. software to extract feature parameters. Differences in texture features between the pseudoprogression and non-pseudoprogression groups were analyzed using univariate and multivariate logistic regression. A predictive model for pseudoprogression was constructed, and its performance was evaluated using ROC curve analysis. Results: A total of 32 patients with 89 lesions were included in the study. Statistical analysis revealed significant differences in seven texture features between the pseudoprogression and non-pseudoprogression groups. These features included"original_ngtdm_Strength"(0.49 vs. -0.61,P=0.006), "wavelet-HLH_glszm_ZonePercentage"(0.67 vs. -0.22,P=0.024),"wavelet-LHL_ngtdm_Strength"(1.20 vs. -0.51,P=0.002), "wavelet-HLL_gldm_LargeDependenceEmphasis"(-0.84 vs. 0.19,P=0.002), "wavelet-HLH_glcm_Id" (-0.30 vs. 0.43,P=0.037),"wavelet- HLH_glrlm_RunPercentage"(0.45 vs. -0.01,P=0.032),"wavelet-LHH_firstorder_Skewness"(0.25 vs. -0.27, P=0.011). Based on these features, a pseudoprogression prediction model was developed with a P-value of 0.000 2 and an odds ratio of 0.045 (95%CI 0.009-0.227). The model exhibited a high predictive performance with an AUC of 0.907 (95%CI 0.817-0.997) according to ROC curve analysis. Conclusions: Enhanced CT texture feature analysis shows promise in predicting lesion pseudoprogression in patients with metastatic ccRCC undergoing PD-1 inhibitor therapy. The developed predictive model based on texture features demonstrates good performance and may assist in evaluating treatment response in these patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[CT织构分析预测PD-1抑制剂治疗期间转移性透明细胞肾细胞癌假进展]。
目的:评价增强CT结构特征分析在预测接受程序性细胞死亡蛋白1 (PD-1)抑制剂治疗的转移性透明细胞肾细胞癌(mccRCC)患者假性进展中的有效性。方法:横断面研究。回顾性收集2015年6月至2021年1月河南省肿瘤医院标准治疗失败后接受PD-1抑制剂单药治疗的32例mccRCC患者的数据。分析临床资料和增强CT图像,评估靶病变的反应。病变分为假进展组和非假进展组。基线增强CT上使用ITK-Snap软件对目标病灶进行人工分割,使用A.K.软件进行纹理分析提取特征参数。使用单变量和多变量逻辑回归分析假进展组和非假进展组之间纹理特征的差异。建立了伪级数预测模型,并利用ROC曲线分析对其性能进行了评价。结果:共纳入32例患者89个病灶。统计分析显示假进展组和非假进展组在7个纹理特征上有显著差异。这些特征包括“original_ngtdm_Strength”(0.49 vs. -0.61,P=0.006)、“wavelet- hlh_glszm_zonepercentage”(0.67 vs. -0.22,P=0.024)、“wavelet- lhl_ngtdm_strength”(1.20 vs. -0.51,P=0.002)、“wavelet- hl_gldm_largedependenceemphasis”(-0.84 vs. 0.19,P=0.002)、“wavelet- hlh_glcm_id”(-0.30 vs. 0.43,P=0.037)、“wavelet- HLH_glrlm_RunPercentage”(0.45 vs. -0.01,P=0.032)、“wavelet- lhh_firstorder_skewness”(0.25 vs. -0.27, P=0.011)。基于这些特征,建立了伪进展预测模型,p值为0.000 2,优势比为0.045 (95%CI为0.009-0.227)。经ROC曲线分析,模型的AUC为0.907 (95%CI为0.817 ~ 0.997),具有较好的预测效果。结论:增强CT结构特征分析有望预测接受PD-1抑制剂治疗的转移性ccRCC患者的病变假进展。开发的基于纹理特征的预测模型表现出良好的性能,可以帮助评估这些患者的治疗反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Clinical characteristics of sudden sensorineural hearing loss with acute cerebral infarction]. [Recommendations for the diagnosis and treatment of gout in China]. [The interaction between phage and intestinal flora and related research progress in inflammatory bowel disease]. [Multiple intracranial tuberculomas: a case report]. [CT texture analysis for predicting pseudoprogression in metastatic clear cell renal cell carcinoma during PD-1 inhibitor therapy].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1