Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies.

IF 2.7 4区 医学 Q3 IMMUNOLOGY Pathogens and disease Pub Date : 2023-01-17 DOI:10.1093/femspd/ftad009
Archana Yadav, Melissa N Brewer, Mostafa S Elshahed, Edward I Shaw
{"title":"Comparative transcriptomics and genomics from continuous axenic media growth identifies Coxiella burnetii intracellular survival strategies.","authors":"Archana Yadav, Melissa N Brewer, Mostafa S Elshahed, Edward I Shaw","doi":"10.1093/femspd/ftad009","DOIUrl":null,"url":null,"abstract":"<p><p>Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftad009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coxiella burnetii (Cb) is an obligate intracellular pathogen in nature and the causative agent of acute Q fever as well as chronic diseases. In an effort to identify genes and proteins crucial to their normal intracellular growth lifestyle, we applied a 'reverse evolution' approach where the avirulent Nine Mile Phase II strain of Cb was grown for 67 passages in chemically defined ACCM-D media and gene expression patterns and genome integrity from various passages was compared to passage number one following intracellular growth. Transcriptomic analysis identified a marked downregulation of the structural components of the type 4B secretion system (T4BSS), the general secretory (Sec) pathway, as well as 14 out of 118 previously identified genes encoding effector proteins. Additional downregulated pathogenicity determinants genes included several chaperones, LPS, and peptidoglycan biosynthesis. A general marked downregulation of central metabolic pathways was also observed, which was balanced by a marked upregulation of genes encoding transporters. This pattern reflected the richness of the media and diminishing anabolic, and ATP-generation needs. Finally, genomic sequencing and comparative genomic analysis demonstrated an extremely low level of mutation across passages, despite the observed Cb gene expression changes following acclimation to axenic media.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续轴生培养基生长的转录组学和基因组学比较确定了烧伤柯西氏菌的胞内生存策略。
烧伤柯西氏菌(Cb)是自然界中一种必须的细胞内病原体,也是急性 Q 热和慢性疾病的致病菌。为了确定对其正常细胞内生长生活方式至关重要的基因和蛋白质,我们采用了一种 "逆向进化 "方法,即在化学定义的 ACCM-D 培养基中培养无毒的九英里二期菌株 67 个阶段,并将各阶段的基因表达模式和基因组完整性与细胞内生长后的第一阶段进行比较。转录组分析发现,4B 型分泌系统(T4BSS)的结构成分、一般分泌(Sec)途径以及之前确定的 118 个编码效应蛋白的基因中的 14 个都出现了明显的下调。其他下调的致病性决定基因包括几个合子、LPS 和肽聚糖生物合成。此外,还观察到中央代谢途径的基因普遍明显下调,而编码转运体的基因则明显上调。这种模式反映了培养基的丰富性以及合成代谢和 ATP 生成需求的减少。最后,基因组测序和比较基因组分析表明,尽管在适应轴生培养基后观察到 Cb 基因表达发生了变化,但各阶段的基因突变水平极低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
期刊最新文献
Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. CRISPR/Cas9-Edited Duck Enteritis Virus expressing Pmp17G of Chlamydia psittaci Induced Protective Immunity in Ducking. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or D-mannose. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in acute phase of COVID-19, convalescents and pre-pandemic individuals. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1