Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian Clarke, Karine Laroucau, Nicole Borel
The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.
细胞内衣原体细菌属中有一些物种具有人畜共患病的潜能,特别是鹦鹉热的病原体 C. psittaci 和可能导致孕妇流产的 C. abortus。其他鸟类衣原体,如鸟疫衣原体、五倍子衣原体和布氏衣原体,或爬行动物衣原体,如鳄鱼衣原体等,对人类健康的影响尚不清楚。衣原体原生质粒是一种可疑的致病因子,除了一些不含质粒的菌株外,目前描述的 14 种衣原体都含有这种质粒。质粒也是研究衣原体遗传学的主要工具,这一仍在发展的领域主要集中在沙眼衣原体上。直到最近,才成功实现了对毛滴虫、白喉杆菌、肺炎双球菌、鹦鹉热双球菌和猪流感双球菌的基因转化,但现有方法还有待完善。在这篇综述文章中,我们将介绍有关衣原体人畜共患病可能性的最新进展。此外,我们还将从衣原体质粒的流行率和作为致病因子的重要性两个方面概述目前对衣原体质粒的了解情况。最后,我们介绍了针对沙眼衣原体以外的衣原体物种开发遗传工具的进展情况,并特别关注了人畜共患衣原体和兽用衣原体。
{"title":"Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation.","authors":"Hanna Marti, Kensuke Shima, Sebastien Boutin, Jan Rupp, Ian Clarke, Karine Laroucau, Nicole Borel","doi":"10.1093/femspd/ftae030","DOIUrl":"https://doi.org/10.1093/femspd/ftae030","url":null,"abstract":"<p><p>The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashlesh K Murthy, Erika Wright-McAfee, Katerina Warda, Lindsay N Moy, Nhi Bui, Tarakarama Musunuri, S Manam, Clemence Z Chako, Kyle H Ramsey, Weidang Li
We have demonstrated previously that TNF-α-producing CD8 + T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8 + T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8 + T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8 + T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4 + T cells abrogated, whereas adoptive transfer of Ag-specific CD4 + T cells induced the significant reduction of Ag-specific CD8+ T cell TNF- α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4 + T cell response that mediate early inhibition of pathogenic CD8 + T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.
我们之前已经证明,产生 TNF-α 的 CD8 + T 细胞介导衣原体的发病机制,很可能是以抗原(Ag)特异性的方式介导的。在此,我们假设在免疫和/或挑战后抑制Ag特异性CD8 + T细胞反应将与保护性疫苗方案诱导的输卵管病理学保护相关。经鼻内(i.n.)活衣原体原体(EB)、肌肉注射(i.m.)活EB或i.n.无关抗原牛血清白蛋白(BSA)免疫的动物在经鼻内(i.vag.)活衣原体原体(EB)、肌肉注射(i.m.)活EB或i.n.无关抗原牛血清白蛋白(BSA)免疫的动物在经鼻内(i.vag.在这些模型中,我们评估了Ag.在这些模型中,我们评估了免疫或挑战后不同时间段的蚕特异性 CD8 + T 细胞细胞因子反应。结果表明,疫苗方案的保护效力与经阴道衣原体挑战后而非免疫接种后Ag特异性CD8 + T细胞TNF-α反应的减少有关。CD4+T细胞的耗竭会减弱衣原体挑战后Ag特异性CD4+T细胞的TNF-α反应,而Ag特异性CD8+T细胞的采用性转移则会诱导Ag特异性CD4+T细胞TNF-α反应的显著降低。总之,保护性抗衣原体疫苗方案可诱导琼脂特异性 CD4 + T 细胞反应,介导挑战后致病性 CD8 + T 细胞反应的早期抑制,并可作为预防衣原体诱导的慢性病变的预测性生物标志物。
{"title":"Protective Anti-Chlamydial Vaccine Regimen-Induced CD4+ T cell Response Mediates Early Inhibition of Pathogenic CD8+ T cell Response Following Genital Challenge","authors":"Ashlesh K Murthy, Erika Wright-McAfee, Katerina Warda, Lindsay N Moy, Nhi Bui, Tarakarama Musunuri, S Manam, Clemence Z Chako, Kyle H Ramsey, Weidang Li","doi":"10.1093/femspd/ftae008","DOIUrl":"https://doi.org/10.1093/femspd/ftae008","url":null,"abstract":"We have demonstrated previously that TNF-α-producing CD8 + T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8 + T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8 + T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8 + T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4 + T cells abrogated, whereas adoptive transfer of Ag-specific CD4 + T cells induced the significant reduction of Ag-specific CD8+ T cell TNF- α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4 + T cell response that mediate early inhibition of pathogenic CD8 + T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"24 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140841265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute Undifferentiated Febrile Illness (AUFI) presents a clinical challenge, often characterized by sudden fever, non-specific symptoms, and potential life-threatening implications. This review highlights the global prevalence, types, challenges, and implications of AUFI, especially in tropical and subtropical regions where infectious diseases thrive. It delves into the difficulties in diagnosis, prevalence rates, regional variations, and potential causes, ranging from bacterial and viral infections to zoonotic diseases. Furthermore, it explores treatment strategies, preventive measures, and the critical role of the One Health approach in addressing AUFI. The paper also addresses the emerging zoonotic risks and ongoing outbreaks, including COVID-19, Rickettsia spp., and other novel pathogens, emphasizing their impact on AUFI diagnosis and management. Challenges in resource-limited settings are analyzed, highlighting the need for bolstered healthcare infrastructure, enhanced diagnostics, and collaborative One Health strategies. Amidst the complexity of emerging zoonotic threats, this review underscores the urgency for a multifaceted approach to mitigate the growing burden of AUFI, ensuring early diagnosis, appropriate treatment, and effective prevention strategies.
{"title":"From Fever to Action: Diagnosis, Treatment, and Prevention of Acute Undifferentiated Febrile Illnesses","authors":"Muttiah Barathan","doi":"10.1093/femspd/ftae006","DOIUrl":"https://doi.org/10.1093/femspd/ftae006","url":null,"abstract":"Acute Undifferentiated Febrile Illness (AUFI) presents a clinical challenge, often characterized by sudden fever, non-specific symptoms, and potential life-threatening implications. This review highlights the global prevalence, types, challenges, and implications of AUFI, especially in tropical and subtropical regions where infectious diseases thrive. It delves into the difficulties in diagnosis, prevalence rates, regional variations, and potential causes, ranging from bacterial and viral infections to zoonotic diseases. Furthermore, it explores treatment strategies, preventive measures, and the critical role of the One Health approach in addressing AUFI. The paper also addresses the emerging zoonotic risks and ongoing outbreaks, including COVID-19, Rickettsia spp., and other novel pathogens, emphasizing their impact on AUFI diagnosis and management. Challenges in resource-limited settings are analyzed, highlighting the need for bolstered healthcare infrastructure, enhanced diagnostics, and collaborative One Health strategies. Amidst the complexity of emerging zoonotic threats, this review underscores the urgency for a multifaceted approach to mitigate the growing burden of AUFI, ensuring early diagnosis, appropriate treatment, and effective prevention strategies.","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":"57 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Vaňková, Jaroslav Julák, Anna Machková, Klára Obrová, Anja Klančnik, Sonja Smole Možina, Vladimír Scholtz
Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.
{"title":"Overcoming antibiotic resistance: non-thermal plasma and antibiotics combination inhibits important pathogens.","authors":"Eva Vaňková, Jaroslav Julák, Anna Machková, Klára Obrová, Anja Klančnik, Sonja Smole Možina, Vladimír Scholtz","doi":"10.1093/femspd/ftae007","DOIUrl":"10.1093/femspd/ftae007","url":null,"abstract":"<p><p>Antibiotic resistance (ATBR) is increasing every year as the overuse of antibiotics (ATBs) and the lack of newly emerging antimicrobial agents lead to an efficient pathogen escape from ATBs action. This trend is alarming and the World Health Organization warned in 2021 that ATBR could become the leading cause of death worldwide by 2050. The development of novel ATBs is not fast enough considering the situation, and alternative strategies are therefore urgently required. One such alternative may be the use of non-thermal plasma (NTP), a well-established antimicrobial agent actively used in a growing number of medical fields. Despite its efficiency, NTP alone is not always sufficient to completely eliminate pathogens. However, NTP combined with ATBs is more potent and evidence has been emerging over the last few years proving this is a robust and highly effective strategy to fight resistant pathogens. This minireview summarizes experimental research addressing the potential of the NTP-ATBs combination, particularly for inhibiting planktonic and biofilm growth and treating infections in mouse models caused by methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa. The published studies highlight this combination as a promising solution to emerging ATBR, and further research is therefore highly desirable.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140908942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shan Cheng, Yi Liu, Bei He, Jinrong Zhang, Yewei Yang, Xinglv Wang, Zhongyu Li
Chlamydia trachomatis infection can be regulated by autophagy-related genes. LncRNA CYTOR has been proven to be involved in autophagy. In this research, we investigated the role of CYTOR in autophagy induced by C. trachomatis and the potential mechanisms. After C. trachomatis infection, CYTOR and MAPK1 were up-regulated and miR-206 was down-regulated, meanwhile, the autophagy-related protein Beclin1 and LC3-Ⅱ/LC3-Ⅰ ratio were increased. Interference with CYTOR or overexpression with miR-206 downregulated the autophagy-related protein Beclin1 and the number of autophagic spots LC3, decreased the protein ratio of LC3-II/LC3-I, and upregulated the expression of P62 protein. The luciferase reporter assay confirmed that CYTOR acted as a sponge for miR-206 to target MAPK1. In addition, CYTOR promoted autophagy induced by C. trachomatis infection through the MAPK1/ERK signaling pathway activation. Taken together, we have identified a novel molecular mechanism that the CYTOR/miR-206/MAPK1 axis was involved in the regulation of autophagy in C. trachomatis infection. This work provides an experimental basis for elucidating the pathogenesis of C. trachomatis for the treatment, prevention and control of related infectious diseases.
{"title":"Chlamydia trachomatis upregulates lncRNA CYTOR to mediate autophagy through miR-206/MAPK1 axis.","authors":"Shan Cheng, Yi Liu, Bei He, Jinrong Zhang, Yewei Yang, Xinglv Wang, Zhongyu Li","doi":"10.1093/femspd/ftae011","DOIUrl":"10.1093/femspd/ftae011","url":null,"abstract":"<p><p>Chlamydia trachomatis infection can be regulated by autophagy-related genes. LncRNA CYTOR has been proven to be involved in autophagy. In this research, we investigated the role of CYTOR in autophagy induced by C. trachomatis and the potential mechanisms. After C. trachomatis infection, CYTOR and MAPK1 were up-regulated and miR-206 was down-regulated, meanwhile, the autophagy-related protein Beclin1 and LC3-Ⅱ/LC3-Ⅰ ratio were increased. Interference with CYTOR or overexpression with miR-206 downregulated the autophagy-related protein Beclin1 and the number of autophagic spots LC3, decreased the protein ratio of LC3-II/LC3-I, and upregulated the expression of P62 protein. The luciferase reporter assay confirmed that CYTOR acted as a sponge for miR-206 to target MAPK1. In addition, CYTOR promoted autophagy induced by C. trachomatis infection through the MAPK1/ERK signaling pathway activation. Taken together, we have identified a novel molecular mechanism that the CYTOR/miR-206/MAPK1 axis was involved in the regulation of autophagy in C. trachomatis infection. This work provides an experimental basis for elucidating the pathogenesis of C. trachomatis for the treatment, prevention and control of related infectious diseases.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Raguib Munif, Robert A Hart, Rukshan A M Rafeek, Amali C Mallawaarachchi, Lyndal Anderson, David J McMillan, Kadaba S Sriprakash, Natkunam Ketheesan
Post-streptococcal glomerulonephritis (PSGN) is primarily associated with preceding group A streptococcal skin or throat infections, now mainly observed in economically disadvantaged communities. This condition significantly predisposes individuals to later-life chronic kidney disease and concurrent renal complications, with the elderly experiencing increased severity and less favourable outcomes. Streptococcal pyrogenic exotoxin B and nephritis-associated plasmin receptor are identified nephritogenic antigens (nephritogens). Pathogenesis of PSGN is multifactorial. It can involve the formation of antigen-antibody immune complexes, causing inflammatory damage to renal glomeruli. Deposition of circulating immune complexes or in situ formation of immune complexes in glomeruli, or both, results in glomerulonephritis. Additionally, molecular mimicry is hypothesized as a mechanism, wherein cross-reactivity between anti-streptococcal antibodies and glomerular intrinsic matrix proteins leads to glomerulonephritis. Besides, as observed in clinical studies, streptococcal inhibitor of complement, a streptococcal-secreted protein, can also be associated with PSGN. However, the interplay between these streptococcal antigens in the pathogenesis of PSGN necessitates further investigation. Despite the clinical significance of PSGN, the lack of credible animal models poses challenges in understanding the association between streptococcal antigens and the disease process. This review outlines the postulated mechanisms implicated in the development of PSGN with possible therapeutic approaches.
链球菌感染后肾小球肾炎(PSGN)主要与之前的 A 组链球菌皮肤或咽喉感染有关,目前主要出现在经济条件较差的社区。这种疾病极易使患者在晚年患上慢性肾脏疾病并并发肾脏并发症,老年人的病情更为严重,治疗效果也更差。链球菌化脓性外毒素 B 和肾炎相关血浆蛋白受体是已确定的致肾炎抗原(肾炎原)。PSGN 的发病机制是多因素的。它可能涉及抗原-抗体免疫复合物的形成,对肾小球造成炎性损害。循环免疫复合物沉积或免疫复合物在肾小球原位形成,或两者兼而有之,都会导致肾小球肾炎。此外,分子模拟也被认为是一种机制,即抗链球菌抗体与肾小球固有基质蛋白之间的交叉反应导致肾小球肾炎。此外,正如临床研究观察到的那样,链球菌分泌的一种蛋白--链球菌补体抑制剂也可能与 PSGN 有关。然而,这些链球菌抗原在 PSGN 发病机制中的相互作用还需要进一步研究。尽管 PSGN 具有重要的临床意义,但由于缺乏可靠的动物模型,因此在理解链球菌抗原与疾病过程之间的关联方面存在挑战。本综述概述了 PSGN 发病的假定机制以及可能的治疗方法。
{"title":"Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis.","authors":"Mohammad Raguib Munif, Robert A Hart, Rukshan A M Rafeek, Amali C Mallawaarachchi, Lyndal Anderson, David J McMillan, Kadaba S Sriprakash, Natkunam Ketheesan","doi":"10.1093/femspd/ftae024","DOIUrl":"10.1093/femspd/ftae024","url":null,"abstract":"<p><p>Post-streptococcal glomerulonephritis (PSGN) is primarily associated with preceding group A streptococcal skin or throat infections, now mainly observed in economically disadvantaged communities. This condition significantly predisposes individuals to later-life chronic kidney disease and concurrent renal complications, with the elderly experiencing increased severity and less favourable outcomes. Streptococcal pyrogenic exotoxin B and nephritis-associated plasmin receptor are identified nephritogenic antigens (nephritogens). Pathogenesis of PSGN is multifactorial. It can involve the formation of antigen-antibody immune complexes, causing inflammatory damage to renal glomeruli. Deposition of circulating immune complexes or in situ formation of immune complexes in glomeruli, or both, results in glomerulonephritis. Additionally, molecular mimicry is hypothesized as a mechanism, wherein cross-reactivity between anti-streptococcal antibodies and glomerular intrinsic matrix proteins leads to glomerulonephritis. Besides, as observed in clinical studies, streptococcal inhibitor of complement, a streptococcal-secreted protein, can also be associated with PSGN. However, the interplay between these streptococcal antigens in the pathogenesis of PSGN necessitates further investigation. Despite the clinical significance of PSGN, the lack of credible animal models poses challenges in understanding the association between streptococcal antigens and the disease process. This review outlines the postulated mechanisms implicated in the development of PSGN with possible therapeutic approaches.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556339/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.
{"title":"Comparative analysis of genomic characteristics and immune response between Mycobacterium tuberculosis strains cultured continuously for 25 years and H37Rv.","authors":"Chuanzhi Zhu, Jing Dong, Yuheng Duan, Hongyan Jia, Lanyue Zhang, Aiying Xing, Boping Du, Qi Sun, Yinxia Huang, Zongde Zhang, Liping Pan, Zihui Li","doi":"10.1093/femspd/ftae014","DOIUrl":"10.1093/femspd/ftae014","url":null,"abstract":"<p><p>Tuberculosis (TB) continues to pose a significant global health challenge, emphasizing the critical need for effective preventive measures. Although many studies have tried to develop new attenuated vaccines, there is no effective TB vaccine. In this study, we report a novel attenuated Mycobacterium tuberculosis (M. tb) strain, CHVAC-25, cultured continuously for 25 years in the laboratory. CHVAC-25 exhibited significantly reduced virulence compared to both the virulent H37Rv strain in C57BL/6J and severe combined immunodeficiency disease mice. The comparative genomic analysis identified 93 potential absent genomic segments and 65 single nucleotide polymorphic sites across 47 coding genes. Notably, the deletion mutation of ppsC (Rv2933) involved in phthiocerol dimycocerosate synthesis likely contributes to CHVAC-25 virulence attenuation. Furthermore, the comparative analysis of immune responses between H37Rv- and CHVAC-25-infected macrophages showed that CHVAC-25 triggered a robust upregulation of 173 genes, particularly cytokines crucial for combating M. tb infection. Additionally, the survival of CHVAC-25 was significantly reduced compared to H37Rv in macrophages. These findings reiterate the possibility of obtaining attenuated M. tb strains through prolonged laboratory cultivation, echoing the initial conception of H37Ra nearly a century ago. Additionally, the similarity of CHVAC-25 to genotypes associated with attenuated M. tb vaccine positions it as a promising candidate for TB vaccine development.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cutaneous burn trauma, compromise of dermal layers and immune defense system is a physical and fiscal burden on healthcare systems. Burn-wound infections are a serious complication of thermal injury and contribute significantly to care burden. After burn-induced trauma, sepsis by Pseudomonas aeruginosa impairs patient recovery and contributes to mortality and morbidity. Past studies show positive correlation between detection of Pseudomonas species and healing-impaired traumatic wounds. Pseudomonas aeruginosa is a resilient opportunistic human pathogen and a nosocomial agent involved in pathology of healing-impaired wounds, especially in burn patients. Expansive array of virulence determinants has resulted in gentamicin- and silver-resistant P. aeruginosa outbreaks. Knowledge of molecular dynamics and phylogeny of P. aeruginosa associated with burn wounds is limited. Therefore, we conducted whole-genome sequencing for genotyping and phylogenetic analysis of P. aeruginosa burn-associated strains (n = 19) isolated from 7 burn cases during hospitalization. Comparison of genetic features in P. aeruginosa strains in the core genome and mobilome detected genetic variations within some clonal infections over time. Genetic variations were observed among different burn cases, with some features identified in severe lung infections. Polyclonal infections were also observed, with differing genotypes and virulence potentials, highlighting the importance of reasoned sampling of isolates for clinical testing.
{"title":"Phylogenetic evaluation and genotypic identification of burn-related Pseudomonas aeruginosa strains isolated from post-burn human infections during hospitalization.","authors":"Fatemeh Sanjar, Claudia P Millan, Kai P Leung","doi":"10.1093/femspd/ftae021","DOIUrl":"10.1093/femspd/ftae021","url":null,"abstract":"<p><p>Cutaneous burn trauma, compromise of dermal layers and immune defense system is a physical and fiscal burden on healthcare systems. Burn-wound infections are a serious complication of thermal injury and contribute significantly to care burden. After burn-induced trauma, sepsis by Pseudomonas aeruginosa impairs patient recovery and contributes to mortality and morbidity. Past studies show positive correlation between detection of Pseudomonas species and healing-impaired traumatic wounds. Pseudomonas aeruginosa is a resilient opportunistic human pathogen and a nosocomial agent involved in pathology of healing-impaired wounds, especially in burn patients. Expansive array of virulence determinants has resulted in gentamicin- and silver-resistant P. aeruginosa outbreaks. Knowledge of molecular dynamics and phylogeny of P. aeruginosa associated with burn wounds is limited. Therefore, we conducted whole-genome sequencing for genotyping and phylogenetic analysis of P. aeruginosa burn-associated strains (n = 19) isolated from 7 burn cases during hospitalization. Comparison of genetic features in P. aeruginosa strains in the core genome and mobilome detected genetic variations within some clonal infections over time. Genetic variations were observed among different burn cases, with some features identified in severe lung infections. Polyclonal infections were also observed, with differing genotypes and virulence potentials, highlighting the importance of reasoned sampling of isolates for clinical testing.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha
Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.
{"title":"Awakening the sleeping giant: Epstein-Barr virus reactivation by biological agents.","authors":"Omkar Indari, Subhrojyoti Ghosh, Adhiraj Singh Bal, Ajay James, Mehek Garg, Amit Mishra, Krishanpal Karmodiya, Hem Chandra Jha","doi":"10.1093/femspd/ftae002","DOIUrl":"10.1093/femspd/ftae002","url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) may cause harm in immunocompromised conditions or on stress stimuli. Various chemical agents have been utilized to induce the lytic cycle in EBV-infected cells. However, apart from chemical agents and external stress stimuli, certain infectious agents may reactivate the EBV. In addition, the acute infection of other pathogens may provide suitable conditions for EBV to thrive more and planting the roots for EBV-associated pathologies. Various bacteria such as periodontal pathogens like Aggregatibacter, Helicobacter pylori, etc. have shown to induce EBV reactivation either by triggering host cells directly or indirectly. Viruses such as Human simplex virus-1 (HSV) induce EBV reactivation by HSV US3 kinase while other viruses such as HIV, hepatitis virus, and even novel SARS-CoV-2 have also been reported to cause EBV reactivation. The eukaryotic pathogens such as Plasmodium falciparum and Aspergillus flavus can also reactivate EBV either by surface protein interaction or as an impact of aflatoxin, respectively. To highlight the underexplored niche of EBV reactivation by biological agents, we have comprehensively presented the related information in this review. This may help to shedding the light on the research gaps as well as to unveil yet unexplored mechanisms of EBV reactivation.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström
Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.
{"title":"Multispecies bacterial invasion of human host cells.","authors":"Charlotte Abell-King, Alaska Pokhrel, Scott A Rice, Iain G Duggin, Bill Söderström","doi":"10.1093/femspd/ftae012","DOIUrl":"10.1093/femspd/ftae012","url":null,"abstract":"<p><p>Urinary tract infection (UTI), one of the most common bacterial infections worldwide, is a typical example of an infection that is often polymicrobial in nature. While the overall infection course is known on a macroscale, bacterial behavior is not fully understood at the cellular level and bacterial pathophysiology during multispecies infection is not well characterized. Here, using clinically relevant bacteria, human epithelial bladder cells and human urine, we establish co-infection models combined with high resolution imaging to compare single- and multi-species bladder cell invasion events in three common uropathogens: uropathogenic Escherichia coli (UPEC), Klebsiella pneumoniae and Enterococcus faecalis. While all three species invaded the bladder cells, under flow conditions the Gram-positive E. faecalis was significantly less invasive compared to the Gram-negative UPEC and K. pneumoniae. When introduced simultaneously during an infection experiment, all three bacterial species sometimes invaded the same bladder cell, at differing frequencies suggesting complex interactions between bacterial species and bladder cells. Inside host cells, we observed encasement of E. faecalis colonies specifically by UPEC. During subsequent dispersal from the host cells, only the Gram-negative bacteria underwent infection-related filamentation (IRF). Taken together, our data suggest that bacterial multispecies invasions of single bladder cells are frequent and support earlier studies showing intraspecies cooperation on a biochemical level during UTI.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}