{"title":"CD40 induces selective routing of Ras isoforms to subcellular compartments","authors":"Arathi Nair, Sushmita Chakraborty, Bhaskar Saha","doi":"10.1007/s12079-023-00747-w","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms’ tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms—H-Ras and N-Ras—have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms.</p>\n </div>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"17 3","pages":"1009-1021"},"PeriodicalIF":3.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409697/pdf/12079_2023_Article_747.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1007/s12079-023-00747-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ras GTPases are central to cellular signaling and oncogenesis. The three loci of the Ras gene encode for four protein isoforms namely Harvey-Ras (H-Ras), Kirsten-Ras (K-Ras 4A and 4B), and Neuroblastoma-Ras (N-Ras) which share ~ 80% sequence similarity and used to be considered functionally redundant. The small molecule inhibitors of Ras lack specificity for the isoforms leading to widespread toxicity in Ras-targeted therapeutics. Ras isoforms’ tissue-specific expression and selective association with carcinogenesis, embryonic development, and infection suggested their non-redundancy. We show that CD40, an antigen-presenting cell (APC)-expressed immune receptor, induces selective relocation of H-Ras, K-Ras, and N-Ras to the Plasma membrane (PM) lipid rafts, mitochondria, endoplasmic reticulum (ER), but not to the Golgi complex (GC). The two palmitoylated Ras isoforms—H-Ras and N-Ras—have a similar pattern of colocalization into the lipid-rich raft microdomain of the PM at early time points when compared to non-palmitoylated K-Ras (4B) with polylysine residues. CD40-induced trafficking of H-Ras and K-Ras to mitochondria and ER was found to be similar but different from that of N-Ras. Trafficking of all the Ras isoforms to the GC was independent of CD40 stimulation. The receptor-driven trafficking and spatial segregation of H-Ras, K-Ras, and N-Ras imply isoform-specific subcellular signaling platforms for the functional non-redundancy of Ras isoforms.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.