Senik Matinyan, Burak Demir, Pavel Filipcik, Jan Pieter Abrahams, Eric van Genderen
{"title":"Machine learning for classifying narrow-beam electron diffraction data.","authors":"Senik Matinyan, Burak Demir, Pavel Filipcik, Jan Pieter Abrahams, Eric van Genderen","doi":"10.1107/S2053273323004680","DOIUrl":null,"url":null,"abstract":"<p><p>As an alternative approach to X-ray crystallography and single-particle cryo-electron microscopy, single-molecule electron diffraction has a better signal-to-noise ratio and the potential to increase the resolution of protein models. This technology requires collection of numerous diffraction patterns, which can lead to congestion of data collection pipelines. However, only a minority of the diffraction data are useful for structure determination because the chances of hitting a protein of interest with a narrow electron beam may be small. This necessitates novel concepts for quick and accurate data selection. For this purpose, a set of machine learning algorithms for diffraction data classification has been implemented and tested. The proposed pre-processing and analysis workflow efficiently distinguished between amorphous ice and carbon support, providing proof of the principle of machine learning based identification of positions of interest. While limited in its current context, this approach exploits inherent characteristics of narrow electron beam diffraction patterns and can be extended for protein data classification and feature extraction.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":"79 Pt 4","pages":"360-368"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10317134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A: Foundations and Advances","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1107/S2053273323004680","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an alternative approach to X-ray crystallography and single-particle cryo-electron microscopy, single-molecule electron diffraction has a better signal-to-noise ratio and the potential to increase the resolution of protein models. This technology requires collection of numerous diffraction patterns, which can lead to congestion of data collection pipelines. However, only a minority of the diffraction data are useful for structure determination because the chances of hitting a protein of interest with a narrow electron beam may be small. This necessitates novel concepts for quick and accurate data selection. For this purpose, a set of machine learning algorithms for diffraction data classification has been implemented and tested. The proposed pre-processing and analysis workflow efficiently distinguished between amorphous ice and carbon support, providing proof of the principle of machine learning based identification of positions of interest. While limited in its current context, this approach exploits inherent characteristics of narrow electron beam diffraction patterns and can be extended for protein data classification and feature extraction.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.