{"title":"Violation of the Constant Genetic Effect Assumption Can Result in Biased Estimates for Non-Linear Mendelian Randomization.","authors":"Stephen Burgess","doi":"10.1159/000531659","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Non-linear Mendelian randomization is an extension of conventional Mendelian randomization that performs separate instrumental variable analyses in strata of the study population with different average levels of the exposure. The approach estimates a localized average causal effect function, representing the average causal effect of the exposure on the outcome at different levels of the exposure. The commonly used residual method for dividing the population into strata works under the assumption that the effect of the genetic instrument on the exposure is linear and constant in the study population. However, this assumption may not hold in practice.</p><p><strong>Methods: </strong>We use the recently developed doubly ranked method to re-analyse various datasets previously analysed using the residual method. In particular, we consider a genetic score for 25-hydroxyvitamin D (25[OH]D) used in a recent non-linear Mendelian randomization analysis to assess the potential effect of vitamin D supplementation on all-cause mortality.</p><p><strong>Results: </strong>The effect of the genetic score on 25(OH)D concentrations varies strongly, with a five-fold difference in the estimated genetic association with the exposure in the lowest and highest decile groups. Evidence for a protective causal effect of vitamin D supplementation on all-cause mortality in low vitamin D individuals is evident for the residual method but not for the doubly ranked method. We show that the constant genetic effect assumption is more reasonable for some exposures and less reasonable for others. If the doubly ranked method indicates that this assumption is violated, then estimates from both the residual and doubly ranked methods can be biased, although bias was smaller on average in the doubly ranked method.</p><p><strong>Conclusion: </strong>Analysts wanting to perform non-linear Mendelian randomization should compare results from both the residual and doubly ranked methods, as well as consider transforming the exposure for the residual method to reduce heterogeneity in the genetic effect on the exposure.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531659","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Non-linear Mendelian randomization is an extension of conventional Mendelian randomization that performs separate instrumental variable analyses in strata of the study population with different average levels of the exposure. The approach estimates a localized average causal effect function, representing the average causal effect of the exposure on the outcome at different levels of the exposure. The commonly used residual method for dividing the population into strata works under the assumption that the effect of the genetic instrument on the exposure is linear and constant in the study population. However, this assumption may not hold in practice.
Methods: We use the recently developed doubly ranked method to re-analyse various datasets previously analysed using the residual method. In particular, we consider a genetic score for 25-hydroxyvitamin D (25[OH]D) used in a recent non-linear Mendelian randomization analysis to assess the potential effect of vitamin D supplementation on all-cause mortality.
Results: The effect of the genetic score on 25(OH)D concentrations varies strongly, with a five-fold difference in the estimated genetic association with the exposure in the lowest and highest decile groups. Evidence for a protective causal effect of vitamin D supplementation on all-cause mortality in low vitamin D individuals is evident for the residual method but not for the doubly ranked method. We show that the constant genetic effect assumption is more reasonable for some exposures and less reasonable for others. If the doubly ranked method indicates that this assumption is violated, then estimates from both the residual and doubly ranked methods can be biased, although bias was smaller on average in the doubly ranked method.
Conclusion: Analysts wanting to perform non-linear Mendelian randomization should compare results from both the residual and doubly ranked methods, as well as consider transforming the exposure for the residual method to reduce heterogeneity in the genetic effect on the exposure.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.