Markus Brugger, Manuel Lutz, Martina Müller-Nurasyid, Peter Lichtner, Emily P Slater, Elvira Matthäi, Detlef K Bartsch, Konstantin Strauch
{"title":"Joint Linkage and Association Analysis Using GENEHUNTER-MODSCORE with an Application to Familial Pancreatic Cancer.","authors":"Markus Brugger, Manuel Lutz, Martina Müller-Nurasyid, Peter Lichtner, Emily P Slater, Elvira Matthäi, Detlef K Bartsch, Konstantin Strauch","doi":"10.1159/000535840","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex.</p><p><strong>Methods: </strong>In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa).</p><p><strong>Results: </strong>Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer.</p><p><strong>Conclusion: </strong>Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":" ","pages":"8-31"},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000535840","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Joint linkage and association (JLA) analysis combines two disease gene mapping strategies: linkage information contained in families and association information contained in populations. Such a JLA analysis can increase mapping power, especially when the evidence for both linkage and association is low to moderate. Similarly, an association analysis based on haplotypes instead of single markers can increase mapping power when the association pattern is complex.
Methods: In this paper, we present an extension to the GENEHUNTER-MODSCORE software package that enables a JLA analysis based on haplotypes and uses information from arbitrary pedigree types and unrelated individuals. Our new JLA method is an extension of the MOD score approach for linkage analysis, which allows the estimation of trait-model and linkage disequilibrium (LD) parameters, i.e., penetrance, disease-allele frequency, and haplotype frequencies. LD is modeled between alleles at a single diallelic disease locus and up to three diallelic test markers. Linkage information is contributed by additional multi-allelic flanking markers. We investigated the statistical properties of our JLA implementation using extensive simulations, and we compared our approach to another commonly used single-marker JLA test. To demonstrate the applicability of our new method in practice, we analyzed pedigree data from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa).
Results: Based on the simulated data, we demonstrated the validity of our JLA-MOD score analysis implementation and identified scenarios in which haplotype-based tests outperformed the single-marker test. The estimated trait-model and LD parameters were in good accordance with the simulated values. Our method outperformed another commonly used JLA single-marker test when the LD pattern was complex. The exploratory analysis of the FaPaCa families led to the identification of a promising genetic region on chromosome 22q13.33, which can serve as a starting point for future mutation analysis and molecular research in pancreatic cancer.
Conclusion: Our newly proposed JLA-MOD score method proves to be a valuable gene mapping and characterization tool, especially when either linkage or association information alone provide insufficient power to identify the disease-causing genetic variants.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.