Sparse Group Lasso: Optimal Sample Complexity, Convergence Rate, and Statistical Inference

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2022-03-16 DOI:10.1109/TIT.2022.3175455
T. Tony Cai;Anru R. Zhang;Yuchen Zhou
{"title":"Sparse Group Lasso: Optimal Sample Complexity, Convergence Rate, and Statistical Inference","authors":"T. Tony Cai;Anru R. Zhang;Yuchen Zhou","doi":"10.1109/TIT.2022.3175455","DOIUrl":null,"url":null,"abstract":"We study sparse group Lasso for high-dimensional double sparse linear regression, where the parameter of interest is simultaneously element-wise and group-wise sparse. This problem is an important instance of the simultaneously structured model – an actively studied topic in statistics and machine learning. In the noiseless case, matching upper and lower bounds on sample complexity are established for the exact recovery of sparse vectors and for stable estimation of approximately sparse vectors, respectively. In the noisy case, upper and matching minimax lower bounds for estimation error are obtained. We also consider the debiased sparse group Lasso and investigate its asymptotic property for the purpose of statistical inference. Finally, numerical studies are provided to support the theoretical results.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"68 9","pages":"5975-6002"},"PeriodicalIF":2.2000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9775685/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 17

Abstract

We study sparse group Lasso for high-dimensional double sparse linear regression, where the parameter of interest is simultaneously element-wise and group-wise sparse. This problem is an important instance of the simultaneously structured model – an actively studied topic in statistics and machine learning. In the noiseless case, matching upper and lower bounds on sample complexity are established for the exact recovery of sparse vectors and for stable estimation of approximately sparse vectors, respectively. In the noisy case, upper and matching minimax lower bounds for estimation error are obtained. We also consider the debiased sparse group Lasso and investigate its asymptotic property for the purpose of statistical inference. Finally, numerical studies are provided to support the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏组套索:最优样本复杂度,收敛率和统计推断
我们研究了高维双稀疏线性回归的稀疏群Lasso,其中感兴趣的参数同时是元素稀疏和群稀疏。这个问题是同步结构模型的一个重要实例,同步结构模型是统计学和机器学习中一个被积极研究的话题。在无噪声情况下,分别为稀疏向量的精确恢复和近似稀疏向量的稳定估计建立了匹配的样本复杂度上界和下界。在有噪声情况下,得到了估计误差的上界和匹配的极大极小下界。我们还考虑了去偏稀疏群Lasso,并研究了它的渐近性质,用于统计推断。最后,通过数值研究对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1