首页 > 最新文献

IEEE Transactions on Information Theory最新文献

英文 中文
IEEE Transactions on Information Theory Information for Authors IEEE信息理论汇刊:作者信息
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-23 DOI: 10.1109/TIT.2025.3643223
{"title":"IEEE Transactions on Information Theory Information for Authors","authors":"","doi":"10.1109/TIT.2025.3643223","DOIUrl":"https://doi.org/10.1109/TIT.2025.3643223","url":null,"abstract":"","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"C3-C3"},"PeriodicalIF":2.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11313748","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! techxiv:与世界分享你的预印本研究!
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-23 DOI: 10.1109/TIT.2025.3643249
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TIT.2025.3643249","DOIUrl":"https://doi.org/10.1109/TIT.2025.3643249","url":null,"abstract":"","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"810-810"},"PeriodicalIF":2.9,"publicationDate":"2025-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11313722","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Huber-Robust Likelihood Ratio Tests for Composite Nulls and Alternatives 复合零值和替代值的Huber-Robust似然比检验
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-08 DOI: 10.1109/TIT.2025.3641166
Aytijhya Saha;Aaditya Ramdas
We propose an e-value based framework for testing arbitrary composite nulls against composite alternatives, when an $epsilon $ fraction of the data can be arbitrarily corrupted. Our tests are inherently sequential, being valid at arbitrary data-dependent stopping times, but they are new even for fixed sample sizes, giving type-I error control without any regularity conditions. We first prove that least favourable distribution (LFD) pairs, when they exist, yield optimal e-values for testing arbitrary composite nulls against composite alternatives. Then we show that if an LFD pair exists for some composite null and alternative, then the LFDs of Huber’s $epsilon $ -contamination or total variation (TV) neighborhoods around that specific pair form the optimal LFD pair for the corresponding robustified composite hypotheses. Furthermore, where LFDs do not exist, we develop new robust composite tests for general settings. Our test statistics are a nonnegative supermartingale under the (robust) null, even under a sequentially adaptive (non-i.i.d.) contamination model where the conditional distribution of each observation given the past data lies within an $epsilon $ TV ball of some distribution in the original composite null. When LFDs exist, our supermartingale grows to infinity exponentially fast under any distribution in the ( $epsilon $ TV-corruption of the) alternative at the optimal rate. When LFDs do not exist, we provide an asymptotic growth rate analysis, showing that as $epsilon to 0$ , the exponent converges to the corresponding Kullback–Leibler divergence, recovering the classical optimal non-robust rate. Simulations validate the theory and demonstrate reasonable practical performance.
我们提出了一个基于e值的框架,用于测试任意复合null与复合替代,当数据的$epsilon $分数可以被任意损坏时。我们的测试本质上是顺序的,在任意依赖于数据的停止时间都有效,但即使对于固定的样本量,它们也是新的,在没有任何规则条件的情况下提供i型错误控制。我们首先证明了最不利分布(LFD)对,当它们存在时,可以产生最优的e值,用于测试任意组合空对组合替代。然后,我们证明了如果某个复合零值和可选值存在LFD对,那么围绕该特定对的Huber 's $epsilon $ -污染或总变差(TV)邻域的LFD形成相应鲁棒化复合假设的最优LFD对。此外,在不存在lfd的情况下,我们为一般设置开发了新的健壮的复合测试。我们的检验统计量在(鲁棒)null下是非负的上鞅,即使在顺序自适应(非i.i.d)污染模型下,给定过去数据的每个观测值的条件分布位于原始复合null中某些分布的$epsilon $ TV球内。当lfd存在时,我们的上鞅在($epsilon $ TV-corruption)的任意分布下以最优速率呈指数级快速增长到无穷大。当lfd不存在时,我们给出了渐近增长率分析,表明当$epsilon 到0$时,指数收敛于相应的Kullback-Leibler散度,恢复经典的最优非鲁棒率。仿真验证了理论的正确性,并展示了合理的实际性能。
{"title":"Huber-Robust Likelihood Ratio Tests for Composite Nulls and Alternatives","authors":"Aytijhya Saha;Aaditya Ramdas","doi":"10.1109/TIT.2025.3641166","DOIUrl":"https://doi.org/10.1109/TIT.2025.3641166","url":null,"abstract":"We propose an e-value based framework for testing arbitrary composite nulls against composite alternatives, when an <inline-formula> <tex-math>$epsilon $ </tex-math></inline-formula> fraction of the data can be arbitrarily corrupted. Our tests are inherently sequential, being valid at arbitrary data-dependent stopping times, but they are new even for fixed sample sizes, giving type-I error control without any regularity conditions. We first prove that least favourable distribution (LFD) pairs, when they exist, yield optimal e-values for testing arbitrary composite nulls against composite alternatives. Then we show that if an LFD pair exists for some composite null and alternative, then the LFDs of Huber’s <inline-formula> <tex-math>$epsilon $ </tex-math></inline-formula>-contamination or total variation (TV) neighborhoods around that specific pair form the optimal LFD pair for the corresponding robustified composite hypotheses. Furthermore, where LFDs do not exist, we develop new robust composite tests for general settings. Our test statistics are a nonnegative supermartingale under the (robust) null, even under a sequentially adaptive (non-i.i.d.) contamination model where the conditional distribution of each observation given the past data lies within an <inline-formula> <tex-math>$epsilon $ </tex-math></inline-formula> TV ball of some distribution in the original composite null. When LFDs exist, our supermartingale grows to infinity exponentially fast under any distribution in the (<inline-formula> <tex-math>$epsilon $ </tex-math></inline-formula> TV-corruption of the) alternative at the optimal rate. When LFDs do not exist, we provide an asymptotic growth rate analysis, showing that as <inline-formula> <tex-math>$epsilon to 0$ </tex-math></inline-formula>, the exponent converges to the corresponding Kullback–Leibler divergence, recovering the classical optimal non-robust rate. Simulations validate the theory and demonstrate reasonable practical performance.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"501-520"},"PeriodicalIF":2.9,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three New Families of Binary AFER-Optimal Linear Codes 三种新的二元后优线性码族
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-05 DOI: 10.1109/TIT.2025.3637800
Tingting Tong;Sihuang Hu
The error coefficient of a linear code, defined as the number of its minimum weight codewords, is a key performance metric to evaluate codes with a given length, dimension, and minimum distance. In this paper, we propose novel approaches, different from existing methods, to produce three new families of binary optimal linear codes with the smallest possible error coefficients. These codes are known as asymptotic frame error rate (AFER)-optimal codes, achieving the best known performance in the additive white Gaussian noise channel and under maximum-likelihood decoding. In particular, we solve a conjecture originally proposed by Li et al. (2025).
线性码的误差系数,定义为其最小权重码字的数量,是评估具有给定长度、尺寸和最小距离的码的关键性能指标。在本文中,我们提出了不同于现有方法的新方法,以产生具有最小可能误差系数的三种新的二进制最优线性码族。这些码被称为渐近帧误码率(AFER)最优码,在加性高斯白噪声信道和最大似然解码下实现最佳性能。特别是,我们解决了Li等人(2025)最初提出的一个猜想。
{"title":"Three New Families of Binary AFER-Optimal Linear Codes","authors":"Tingting Tong;Sihuang Hu","doi":"10.1109/TIT.2025.3637800","DOIUrl":"https://doi.org/10.1109/TIT.2025.3637800","url":null,"abstract":"The error coefficient of a linear code, defined as the number of its minimum weight codewords, is a key performance metric to evaluate codes with a given length, dimension, and minimum distance. In this paper, we propose novel approaches, different from existing methods, to produce three new families of binary optimal linear codes with the smallest possible error coefficients. These codes are known as asymptotic frame error rate (AFER)-optimal codes, achieving the best known performance in the additive white Gaussian noise channel and under maximum-likelihood decoding. In particular, we solve a conjecture originally proposed by Li et al. (2025).","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"374-382"},"PeriodicalIF":2.9,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure Coded Caching: Exact End-Points and Tighter Bounds 安全编码缓存:精确的端点和更严格的边界
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-02 DOI: 10.1109/TIT.2025.3639289
Han Fang;Nan Liu;Wei Kang
We consider the secure coded caching problem proposed by Ravindrakumar et al. where no user can obtain information about files other than the one requested. We first propose three new schemes for 1) the general case with arbitrary N files and K users; 2) cache size $ M=1$ , $N=2$ files and arbitrary K users; and 3) worst-case delivery rate $ R=1 $ , arbitrary N files and K users, respectively. Then we derive some new converse results for 1) the general case with arbitrary N files and K users; 2) cache size $M=1$ with arbitrary N files and K users; 3) worst-case delivery rate $R=1$ with arbitrary N files and K users; and 4) cache size $M in left [{{1, frac {K}{K-1}}}right]$ with $N=2$ files and arbitrary K users. As a result, we obtain 1) the two exact end-points for the optimal memory-rate tradeoff curve for arbitrary number of users and files; 2) a segment of the optimal memory-rate tradeoff curve, where $M in left [{{1, frac {K}{K-1}}}right]$ , for the case of $N=2$ files and arbitrary number of users; and 3) a multiplicative-gap-10 result, i.e., we show that the proposed achievable schemes achieve a ratio less than 10 with respect to the cut-set bound.
我们考虑Ravindrakumar等人提出的安全编码缓存问题,其中用户无法获取除请求文件以外的文件信息。我们首先针对1)任意N个文件和K个用户的一般情况提出了三种新方案;2)缓存大小$ M=1$、$N=2$文件和任意K用户;最差投递率$ R=1 $,任意N个文件和K个用户。然后,我们为1)任意N个文件和K个用户的一般情况导出了一些新的相反结果;2)任意N个文件和K个用户的缓存大小$M=1$;3)任意N个文件、K个用户的最坏投递率$R=1$;4)缓存大小$M in left [{{1, frac {K}{K-1}}}right]$与$N=2$文件和任意K用户。结果,我们得到1)任意数量的用户和文件的最优内存率权衡曲线的两个确切的端点;2)一段最优内存率权衡曲线,其中$M in left [{{1, frac {K}{K-1}}}right]$,对于$N=2$文件和任意数量的用户;3)一个乘法-gap-10的结果,即我们证明了所提出的可实现方案相对于切集界的比率小于10。
{"title":"Secure Coded Caching: Exact End-Points and Tighter Bounds","authors":"Han Fang;Nan Liu;Wei Kang","doi":"10.1109/TIT.2025.3639289","DOIUrl":"https://doi.org/10.1109/TIT.2025.3639289","url":null,"abstract":"We consider the secure coded caching problem proposed by Ravindrakumar et al. where no user can obtain information about files other than the one requested. We first propose three new schemes for 1) the general case with arbitrary <italic>N</i> files and <italic>K</i> users; 2) cache size <inline-formula> <tex-math>$ M=1$ </tex-math></inline-formula>, <inline-formula> <tex-math>$N=2$ </tex-math></inline-formula> files and arbitrary <italic>K</i> users; and 3) worst-case delivery rate <inline-formula> <tex-math>$ R=1 $ </tex-math></inline-formula>, arbitrary <italic>N</i> files and <italic>K</i> users, respectively. Then we derive some new converse results for 1) the general case with arbitrary <italic>N</i> files and <italic>K</i> users; 2) cache size <inline-formula> <tex-math>$M=1$ </tex-math></inline-formula> with arbitrary <italic>N</i> files and <italic>K</i> users; 3) worst-case delivery rate <inline-formula> <tex-math>$R=1$ </tex-math></inline-formula> with arbitrary <italic>N</i> files and <italic>K</i> users; and 4) cache size <inline-formula> <tex-math>$M in left [{{1, frac {K}{K-1}}}right]$ </tex-math></inline-formula> with <inline-formula> <tex-math>$N=2$ </tex-math></inline-formula> files and arbitrary <italic>K</i> users. As a result, we obtain 1) the two exact end-points for the optimal memory-rate tradeoff curve for arbitrary number of users and files; 2) a segment of the optimal memory-rate tradeoff curve, where <inline-formula> <tex-math>$M in left [{{1, frac {K}{K-1}}}right]$ </tex-math></inline-formula>, for the case of <inline-formula> <tex-math>$N=2$ </tex-math></inline-formula> files and arbitrary number of users; and 3) a multiplicative-gap-10 result, i.e., we show that the proposed achievable schemes achieve a ratio less than 10 with respect to the cut-set bound.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"636-663"},"PeriodicalIF":2.9,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of High-Dimensional Nonlinear Vector Autoregressive Models 高维非线性向量自回归模型的估计
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-12-01 DOI: 10.1109/TIT.2025.3639191
Yuefeng Han;Likai Chen;Wei Biao Wu
High-dimensional vector autoregressive (VAR) models have numerous applications in fields such as econometrics, biology, climatology, among others. While prior research has mainly focused on linear VAR models, these approaches can be restrictive in practice. To address this, we introduce a high-dimensional non-parametric sparse additive model, providing a more flexible framework. Our method employs basis expansions to construct high-dimensional nonlinear VAR models. We derive convergence rates and model selection consistency for least squared estimators, considering dependence measures of the processes, error moment conditions, sparsity, and basis expansions. Our theory significantly extends prior linear VAR models by incorporating both non-Gaussianity and non-linearity. As a key contribution, we derive sharp Bernstein-type inequalities for tail probabilities in both non-sub-Gaussian linear and nonlinear VAR processes, which match the classical Bernstein inequality for independent random variables. Additionally, we present numerical experiments that support our theoretical findings and demonstrate the advantages of the nonlinear VAR model for a gene expression time series dataset.
高维向量自回归模型在计量经济学、生物学、气候学等领域有着广泛的应用。虽然先前的研究主要集中在线性VAR模型上,但这些方法在实践中可能受到限制。为了解决这个问题,我们引入了一个高维非参数稀疏加性模型,提供了一个更灵活的框架。该方法采用基展开式构造高维非线性VAR模型。我们推导了最小二乘估计的收敛率和模型选择一致性,考虑了过程的依赖性度量,误差矩条件,稀疏性和基展开。我们的理论通过结合非高斯性和非线性显著扩展了先前的线性VAR模型。作为关键贡献,我们在非亚高斯线性和非线性VAR过程中推导出尾部概率的尖锐Bernstein型不等式,该不等式与经典的独立随机变量Bernstein不等式相匹配。此外,我们提出了数值实验来支持我们的理论发现,并证明了非线性VAR模型用于基因表达时间序列数据集的优势。
{"title":"Estimation of High-Dimensional Nonlinear Vector Autoregressive Models","authors":"Yuefeng Han;Likai Chen;Wei Biao Wu","doi":"10.1109/TIT.2025.3639191","DOIUrl":"https://doi.org/10.1109/TIT.2025.3639191","url":null,"abstract":"High-dimensional vector autoregressive (VAR) models have numerous applications in fields such as econometrics, biology, climatology, among others. While prior research has mainly focused on linear VAR models, these approaches can be restrictive in practice. To address this, we introduce a high-dimensional non-parametric sparse additive model, providing a more flexible framework. Our method employs basis expansions to construct high-dimensional nonlinear VAR models. We derive convergence rates and model selection consistency for least squared estimators, considering dependence measures of the processes, error moment conditions, sparsity, and basis expansions. Our theory significantly extends prior linear VAR models by incorporating both non-Gaussianity and non-linearity. As a key contribution, we derive sharp Bernstein-type inequalities for tail probabilities in both non-sub-Gaussian linear and nonlinear VAR processes, which match the classical Bernstein inequality for independent random variables. Additionally, we present numerical experiments that support our theoretical findings and demonstrate the advantages of the nonlinear VAR model for a gene expression time series dataset.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"521-541"},"PeriodicalIF":2.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Analysis and Code Design for Resistive Random-Access Memory Using Channel Decomposition Approach 基于信道分解方法的电阻式随机存储器性能分析与代码设计
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-27 DOI: 10.1109/TIT.2025.3638148
Guanghui Song;Meiru Gao;Ying Li;Bin Dai;Kui Cai;Lin Zhou
An analytical framework integrating performance characterization and coding theory is proposed to mitigate sneak path (SP) interference in resistive random-access memory (ReRAM) crossbar arrays. The core innovation is identified in the mathematical decomposition of ReRAM’s non-ergodic data-dependent channel into multiple stationary memoryless subchannels. Through information-theoretic analysis, an approximate finite-length characterization of the theoretical lower bound for decoding word error probability (WEP) is established. This is achieved by systematically analyzing the SP occurrence rate in constrained array geometries combined with comprehensive evaluation of both mutual information and dispersion metrics across the decomposed channel components. Building upon this decomposition paradigm, a systematic code construction methodology is developed using density evolution principles for sparse-graph code design. The designed codes not only exhibit capacity-approaching decoding thresholds but also yield word error rate simulation results that are close to the derived WEP bound under practical crossbar configurations.
提出了一种集成性能表征和编码理论的分析框架,以减轻电阻性随机存取存储器(ReRAM)交叉棒阵列中的潜行路径(SP)干扰。核心创新在于将ReRAM的非遍历数据相关信道数学分解为多个平稳无记忆子信道。通过信息论分析,建立了译码词误码率理论下界的近似有限长表征。这是通过系统地分析受限阵列几何中的SP发生率,并结合对分解信道组件的互信息和色散度量的综合评估来实现的。在此分解范例的基础上,利用稀疏图代码设计的密度演化原则,开发了系统的代码构建方法。所设计的码不仅具有接近容量的解码阈值,而且在实际横条配置下产生的字错误率模拟结果接近推导出的WEP界限。
{"title":"Performance Analysis and Code Design for Resistive Random-Access Memory Using Channel Decomposition Approach","authors":"Guanghui Song;Meiru Gao;Ying Li;Bin Dai;Kui Cai;Lin Zhou","doi":"10.1109/TIT.2025.3638148","DOIUrl":"https://doi.org/10.1109/TIT.2025.3638148","url":null,"abstract":"An analytical framework integrating performance characterization and coding theory is proposed to mitigate sneak path (SP) interference in resistive random-access memory (ReRAM) crossbar arrays. The core innovation is identified in the mathematical decomposition of ReRAM’s non-ergodic data-dependent channel into multiple stationary memoryless subchannels. Through information-theoretic analysis, an approximate finite-length characterization of the theoretical lower bound for decoding word error probability (WEP) is established. This is achieved by systematically analyzing the SP occurrence rate in constrained array geometries combined with comprehensive evaluation of both mutual information and dispersion metrics across the decomposed channel components. Building upon this decomposition paradigm, a systematic code construction methodology is developed using density evolution principles for sparse-graph code design. The designed codes not only exhibit capacity-approaching decoding thresholds but also yield word error rate simulation results that are close to the derived WEP bound under practical crossbar configurations.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"358-373"},"PeriodicalIF":2.9,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information Density Bounds for Privacy 隐私的信息密度界限
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-26 DOI: 10.1109/TIT.2025.3637364
Sara Saeidian;Leonhard Grosse;Parastoo Sadeghi;Mikael Skoglund;Tobias J. Oechtering
This paper explores the implications of guaranteeing privacy by imposing a lower bound on the information density between the private and the public data. We introduce a novel and operationally meaningful privacy measure called pointwise maximal cost (PMC) and demonstrate that imposing an upper bound on PMC is equivalent to enforcing a lower bound on the information density. PMC quantifies the information leakage about a secret to adversaries who aim to minimize non-negative cost functions after observing the outcome of a privacy mechanism. When restricted to finite alphabets, PMC can equivalently be defined as the information leakage to adversaries aiming to minimize the probability of incorrectly guessing randomized functions of the secret. We study the properties of PMC and apply it to standard privacy mechanisms to demonstrate its practical relevance. Through a detailed examination, we connect PMC with other privacy measures that impose upper or lower bounds on the information density. These are pointwise maximal leakage (PML), local differential privacy (LDP), and (asymmetric) local information privacy. In particular, we show that a mechanism satisfies LDP if and only if it has both bounded PMC and bounded PML. Overall, our work fills a conceptual and operational gap in the taxonomy of privacy measures, bridges existing disconnects between different frameworks, and offers insights for selecting a suitable notion of privacy in a given application.
本文探讨了通过对私有数据和公共数据之间的信息密度施加下界来保证隐私的含义。我们引入了一种新颖且具有操作意义的隐私度量,称为点最大成本(PMC),并证明了PMC的上界等同于信息密度的下界。在观察隐私机制的结果后,PMC量化了攻击者对秘密的信息泄漏,攻击者的目标是最小化非负成本函数。当限于有限的字母时,PMC可以等效地定义为旨在最小化错误猜测秘密随机函数的概率的攻击者的信息泄漏。我们研究了PMC的性质,并将其应用于标准隐私机制,以证明其实际意义。通过详细的研究,我们将PMC与其他对信息密度施加上限或下限的隐私措施联系起来。它们是点最大泄漏(PML)、本地差分隐私(LDP)和(非对称)本地信息隐私。特别地,我们证明了一个机制满足LDP当且仅当它同时具有有界PMC和有界PML。总的来说,我们的工作填补了隐私措施分类中概念和操作上的空白,弥合了不同框架之间现有的脱节,并为在给定应用程序中选择合适的隐私概念提供了见解。
{"title":"Information Density Bounds for Privacy","authors":"Sara Saeidian;Leonhard Grosse;Parastoo Sadeghi;Mikael Skoglund;Tobias J. Oechtering","doi":"10.1109/TIT.2025.3637364","DOIUrl":"https://doi.org/10.1109/TIT.2025.3637364","url":null,"abstract":"This paper explores the implications of guaranteeing privacy by imposing a lower bound on the information density between the private and the public data. We introduce a novel and operationally meaningful privacy measure called <italic>pointwise maximal cost</i> (PMC) and demonstrate that imposing an upper bound on PMC is equivalent to enforcing a lower bound on the information density. PMC quantifies the information leakage about a secret to adversaries who aim to minimize non-negative cost functions after observing the outcome of a privacy mechanism. When restricted to finite alphabets, PMC can equivalently be defined as the information leakage to adversaries aiming to minimize the probability of incorrectly guessing randomized functions of the secret. We study the properties of PMC and apply it to standard privacy mechanisms to demonstrate its practical relevance. Through a detailed examination, we connect PMC with other privacy measures that impose upper or lower bounds on the information density. These are pointwise maximal leakage (PML), local differential privacy (LDP), and (asymmetric) local information privacy. In particular, we show that a mechanism satisfies LDP if and only if it has both bounded PMC and bounded PML. Overall, our work fills a conceptual and operational gap in the taxonomy of privacy measures, bridges existing disconnects between different frameworks, and offers insights for selecting a suitable notion of privacy in a given application.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"610-635"},"PeriodicalIF":2.9,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11269864","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Information Theory Information for Authors IEEE信息理论汇刊:作者信息
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-25 DOI: 10.1109/TIT.2025.3632187
{"title":"IEEE Transactions on Information Theory Information for Authors","authors":"","doi":"10.1109/TIT.2025.3632187","DOIUrl":"https://doi.org/10.1109/TIT.2025.3632187","url":null,"abstract":"","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 12","pages":"C3-C3"},"PeriodicalIF":2.9,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11268980","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Nonparametric Two-Sample Testing by Betting” 对“非参数双样本投注检验”的修正
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-25 DOI: 10.1109/TIT.2025.3614420
Shubhanshu Shekhar;Aaditya Ramdas
Lemma 2 of Shekhar and Ramdas (2024), which was used to derive the upper bound on the expected stopping time stated in (12), contains an error. In this note, we fix this error and provide the correct justification of (12), whose expression remains unchanged up to small constants.
用于推导式(12)中期望停止时间上界的Shekhar和Ramdas(2024)的引理2包含一个错误。在本文中,我们修复了这个错误,并提供了(12)的正确解释,其表达式直到小常数都保持不变。
{"title":"Corrections to “Nonparametric Two-Sample Testing by Betting”","authors":"Shubhanshu Shekhar;Aaditya Ramdas","doi":"10.1109/TIT.2025.3614420","DOIUrl":"https://doi.org/10.1109/TIT.2025.3614420","url":null,"abstract":"<xref>Lemma 2</xref> of Shekhar and Ramdas (2024), which was used to derive the upper bound on the expected stopping time stated in <xref>(12)</xref>, contains an error. In this note, we fix this error and provide the correct justification of <xref>(12)</xref>, whose expression remains unchanged up to small constants.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 12","pages":"9804-9806"},"PeriodicalIF":2.9,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11268981","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Information Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1