Clare Anderson, Anna W T Cai, Michael L Lee, William J Horrey, Yulan Liang, Conor S O'Brien, Charles A Czeisler, Mark E Howard
{"title":"Feeling sleepy? stop driving-awareness of fall asleep crashes.","authors":"Clare Anderson, Anna W T Cai, Michael L Lee, William J Horrey, Yulan Liang, Conor S O'Brien, Charles A Czeisler, Mark E Howard","doi":"10.1093/sleep/zsad136","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>To examine whether drivers are aware of sleepiness and associated symptoms, and how subjective reports predict driving impairment and physiological drowsiness.</p><p><strong>Methods: </strong>Sixteen shift workers (19-65 years; 9 women) drove an instrumented vehicle for 2 hours on a closed-loop track after a night of sleep and a night of work. Subjective sleepiness/symptoms were rated every 15 minutes. Severe and moderate driving impairment was defined by emergency brake maneuvers and lane deviations, respectively. Physiological drowsiness was defined by eye closures (Johns drowsiness scores) and EEG-based microsleep events.</p><p><strong>Results: </strong>All subjective ratings increased post night-shift (p < 0.001). No severe drive events occurred without noticeable symptoms beforehand. All subjective sleepiness ratings, and specific symptoms, predicted a severe (emergency brake) driving event occurring in the next 15 minutes (OR: 1.76-2.4, AUC > 0.81, p < 0.009), except \"head dropping down\". Karolinska Sleepiness Scale (KSS), ocular symptoms, difficulty keeping to center of the road, and nodding off to sleep, were associated with a lane deviation in the next 15 minutes (OR: 1.17-1.24, p<0.029), although accuracy was only \"fair\" (AUC 0.59-0.65). All sleepiness ratings predicted severe ocular-based drowsiness (OR: 1.30-2.81, p < 0.001), with very good-to-excellent accuracy (AUC > 0.8), while moderate ocular-based drowsiness was predicted with fair-to-good accuracy (AUC > 0.62). KSS, likelihood of falling asleep, ocular symptoms, and \"nodding off\" predicted microsleep events, with fair-to-good accuracy (AUC 0.65-0.73).</p><p><strong>Conclusions: </strong>Drivers are aware of sleepiness, and many self-reported sleepiness symptoms predicted subsequent driving impairment/physiological drowsiness. Drivers should self-assess a wide range of sleepiness symptoms and stop driving when these occur to reduce the escalating risk of road crashes due to drowsiness.</p>","PeriodicalId":49514,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10636256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsad136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Study objectives: To examine whether drivers are aware of sleepiness and associated symptoms, and how subjective reports predict driving impairment and physiological drowsiness.
Methods: Sixteen shift workers (19-65 years; 9 women) drove an instrumented vehicle for 2 hours on a closed-loop track after a night of sleep and a night of work. Subjective sleepiness/symptoms were rated every 15 minutes. Severe and moderate driving impairment was defined by emergency brake maneuvers and lane deviations, respectively. Physiological drowsiness was defined by eye closures (Johns drowsiness scores) and EEG-based microsleep events.
Results: All subjective ratings increased post night-shift (p < 0.001). No severe drive events occurred without noticeable symptoms beforehand. All subjective sleepiness ratings, and specific symptoms, predicted a severe (emergency brake) driving event occurring in the next 15 minutes (OR: 1.76-2.4, AUC > 0.81, p < 0.009), except "head dropping down". Karolinska Sleepiness Scale (KSS), ocular symptoms, difficulty keeping to center of the road, and nodding off to sleep, were associated with a lane deviation in the next 15 minutes (OR: 1.17-1.24, p<0.029), although accuracy was only "fair" (AUC 0.59-0.65). All sleepiness ratings predicted severe ocular-based drowsiness (OR: 1.30-2.81, p < 0.001), with very good-to-excellent accuracy (AUC > 0.8), while moderate ocular-based drowsiness was predicted with fair-to-good accuracy (AUC > 0.62). KSS, likelihood of falling asleep, ocular symptoms, and "nodding off" predicted microsleep events, with fair-to-good accuracy (AUC 0.65-0.73).
Conclusions: Drivers are aware of sleepiness, and many self-reported sleepiness symptoms predicted subsequent driving impairment/physiological drowsiness. Drivers should self-assess a wide range of sleepiness symptoms and stop driving when these occur to reduce the escalating risk of road crashes due to drowsiness.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.