Haiyan Li, Yifan Zhu, Zhe Chen, Qiaolin Ma, Ahmed I Abd-Elhamid, Bei Feng, Binbin Sun, Jinglei Wu
{"title":"Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening.","authors":"Haiyan Li, Yifan Zhu, Zhe Chen, Qiaolin Ma, Ahmed I Abd-Elhamid, Bei Feng, Binbin Sun, Jinglei Wu","doi":"10.1089/ten.TEC.2023.0089","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an <i>in vitro</i> cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing <i>in vitro</i> fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"558-571"},"PeriodicalIF":2.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2023.0089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an in vitro cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing in vitro fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.