An interactive deep learning-based approach reveals mitochondrial cristae topologies.

IF 7.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY PLoS Biology Pub Date : 2023-08-31 eCollection Date: 2023-08-01 DOI:10.1371/journal.pbio.3002246
Shogo Suga, Koki Nakamura, Yu Nakanishi, Bruno M Humbel, Hiroki Kawai, Yusuke Hirabayashi
{"title":"An interactive deep learning-based approach reveals mitochondrial cristae topologies.","authors":"Shogo Suga,&nbsp;Koki Nakamura,&nbsp;Yu Nakanishi,&nbsp;Bruno M Humbel,&nbsp;Hiroki Kawai,&nbsp;Yusuke Hirabayashi","doi":"10.1371/journal.pbio.3002246","DOIUrl":null,"url":null,"abstract":"<p><p>The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.</p>","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":"21 8","pages":"e3002246"},"PeriodicalIF":7.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002246","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The convolution of membranes called cristae is a critical structural and functional feature of mitochondria. Crista structure is highly diverse between different cell types, reflecting their role in metabolic adaptation. However, their precise three-dimensional (3D) arrangement requires volumetric analysis of serial electron microscopy and has therefore been limiting for unbiased quantitative assessment. Here, we developed a novel, publicly available, deep learning (DL)-based image analysis platform called Python-based human-in-the-loop workflow (PHILOW) implemented with a human-in-the-loop (HITL) algorithm. Analysis of dense, large, and isotropic volumes of focused ion beam-scanning electron microscopy (FIB-SEM) using PHILOW reveals the complex 3D nanostructure of both inner and outer mitochondrial membranes and provides deep, quantitative, structural features of cristae in a large number of individual mitochondria. This nanometer-scale analysis in micrometer-scale cellular contexts uncovers fundamental parameters of cristae, such as total surface area, orientation, tubular/lamellar cristae ratio, and crista junction density in individual mitochondria. Unbiased clustering analysis of our structural data unraveled a new function for the dynamin-related GTPase Optic Atrophy 1 (OPA1) in regulating the balance between lamellar versus tubular cristae subdomains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于交互式深度学习的方法揭示了线粒体嵴的拓扑结构。
称为嵴的膜的卷积是线粒体的一个关键结构和功能特征。Crista结构在不同细胞类型之间高度多样,反映了它们在代谢适应中的作用。然而,它们精确的三维(3D)排列需要连续电子显微镜的体积分析,因此限制了无偏定量评估。在这里,我们开发了一个新颖的、公开可用的、基于深度学习(DL)的图像分析平台,称为基于Python的人在环工作流(PHILOW),该平台使用人在环(HITL)算法实现。使用PHILOW对密集、大体积和各向同性体积的聚焦离子束扫描电子显微镜(FIB-SEM)进行分析,揭示了线粒体内膜和外膜的复杂3D纳米结构,并提供了大量单个线粒体嵴的深层、定量和结构特征。这种在微米级细胞背景下的纳米级分析揭示了嵴的基本参数,如总表面积、取向、管状/片状嵴比率和单个线粒体中的嵴连接密度。对我们的结构数据进行无偏聚类分析,揭示了动力蛋白相关的GTP酶-视神经萎缩1(OPA1)在调节板层嵴与管状嵴亚结构域之间的平衡方面的新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology 生物-生化与分子生物学
CiteScore
14.40
自引率
2.00%
发文量
359
审稿时长
3 months
期刊介绍: PLOS Biology is an open-access, peer-reviewed general biology journal published by PLOS, a nonprofit organization of scientists and physicians dedicated to making the world's scientific and medical literature freely accessible. The journal publishes new articles online weekly, with issues compiled and published monthly. ISSN Numbers: eISSN: 1545-7885 ISSN: 1544-9173
期刊最新文献
Functional network modules overlap and are linked to interindividual connectome differences during human brain development Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion Organelle landscape analysis using a multiparametric particle-based method Integration of estimated regional gene expression with neuroimaging and clinical phenotypes at biobank scale Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1