首页 > 最新文献

PLoS Biology最新文献

英文 中文
Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication 弓形虫内膜复合体中的 Alveolin 蛋白形成了一个高度相互关联的结构,可维持寄生虫的形状和复制
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-12 DOI: 10.1371/journal.pbio.3002809
Peter S. Back, Vignesh Senthilkumar, Charles P. Choi, Justin J. Quan, Qing Lou, Anne K. Snyder, Andrew M. Ly, Justin G. Lau, Z. Hong Zhou, Gary E. Ward, Peter J. Bradley
Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins in Toxoplasma, IMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant invasion and replication but surprisingly minor effects on motility. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and 2 other cytoskeletal IMC proteins—IMC3 and ILP1. This provides direct evidence of protein–protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite’s structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.
表皮复合寄生虫拥有几种专门的结构,可以入侵宿主细胞并成功复制。其中之一是内膜复合体(IMC),它是质膜下的外周膜-细胞骨架系统。它由一系列扁平的膜结合囊泡和细胞骨架亚球状网络(SPN)组成,后者由称为肺泡蛋白的中间丝状蛋白构成。虽然肺泡蛋白在整个甲壳纲和更广泛的肺泡纲中都是保守的,但它们的确切功能和相互作用仍然鲜为人知。在这里,我们描述了弓形虫中的一种肺泡蛋白 IMC6 的功能。中断 IMC6 会导致惊人的形态缺陷,导致异常入侵和复制,但令人惊讶的是对运动性的影响很小。缺失分析表明,仅肺泡蛋白结构域就足以恢复定位,并部分恢复功能。由于这凸显了 IMC6 alveolin 结构域的重要性,我们对 alveolin 结构域进行了非天然氨基酸光活性交联,并确定了 IMC6 与其他两种细胞骨架 IMC 蛋白--IMC3 和 ILP1 之间的多个结合界面。这直接证明了蛋白与蛋白之间在alveolin结构域的相互作用,并支持了alveolin结构域负责细丝形成这一长期存在的假说。总之,我们的研究表明,保守的alveolin蛋白是维持寄生虫结构完整性的关键成分,并强调了alveolin结构域是SPN结构的关键介质。
{"title":"Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication","authors":"Peter S. Back, Vignesh Senthilkumar, Charles P. Choi, Justin J. Quan, Qing Lou, Anne K. Snyder, Andrew M. Ly, Justin G. Lau, Z. Hong Zhou, Gary E. Ward, Peter J. Bradley","doi":"10.1371/journal.pbio.3002809","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002809","url":null,"abstract":"Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins in <jats:italic>Toxoplasma</jats:italic>, IMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant invasion and replication but surprisingly minor effects on motility. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and 2 other cytoskeletal IMC proteins—IMC3 and ILP1. This provides direct evidence of protein–protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite’s structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion 贝塔波段神经变异揭示了人类工作记忆维持和删除过程中与年龄有关的差异
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-11 DOI: 10.1371/journal.pbio.3002784
Wen Wen, Shrey Grover, Douglas Hazel, Peyton Berning, Frederik Baumgardt, Vighnesh Viswanathan, Olivia Tween, Robert M. G. Reinhart
Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions—information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.
在头脑中保持和删除信息是两个基本的认知过程,但随着年龄的增长,这两个过程的能力会急剧下降。贝塔带神经振荡被认为与工作记忆内容的调节有关,而跨试验神经变异性则被认为是大脑动态的一种被低估的特性,它被认为可以控制适应性认知过程。通过结合使用贝塔带神经振荡和跨试验神经变异性,我们证明了不同的工作记忆功能--信息维持和反应后删除--之间与年龄有关的分离。在维持过程中,β变异性随负荷而下降,这预示着年轻人的记忆表现,而不是老年人的记忆表现。令人惊讶的是,反应后阶段成为预测老年人工作记忆表现的位置,反应后β变异性与老年人而非年轻人的记忆表现相关。单次试验分析表明,反应后贝塔功率升高是记忆删除的频率特异性特征。我们的研究结果证明了年龄、贝塔动态和工作记忆之间微妙的相互作用,为认知能力下降的神经机制提供了有价值的见解,与衰老抑制缺陷理论相一致。
{"title":"Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion","authors":"Wen Wen, Shrey Grover, Douglas Hazel, Peyton Berning, Frederik Baumgardt, Vighnesh Viswanathan, Olivia Tween, Robert M. G. Reinhart","doi":"10.1371/journal.pbio.3002784","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002784","url":null,"abstract":"Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions—information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisensory perceptual and causal inference is largely preserved in medicated post-acute individuals with schizophrenia 药物治疗后精神分裂症患者的多感官知觉和因果推理能力基本保持不变
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1371/journal.pbio.3002790
Tim Rohe, Klaus Hesse, Ann-Christine Ehlis, Uta Noppeney
Hallucinations and perceptual abnormalities in psychosis are thought to arise from imbalanced integration of prior information and sensory inputs. We combined psychophysics, Bayesian modeling, and electroencephalography (EEG) to investigate potential changes in perceptual and causal inference in response to audiovisual flash-beep sequences in medicated individuals with schizophrenia who exhibited limited psychotic symptoms. Seventeen participants with schizophrenia and 23 healthy controls reported either the number of flashes or the number of beeps of audiovisual sequences that varied in their audiovisual numeric disparity across trials. Both groups balanced sensory integration and segregation in line with Bayesian causal inference rather than resorting to simpler heuristics. Both also showed comparable weighting of prior information regarding the signals’ causal structure, although the schizophrenia group slightly overweighted prior information about the number of flashes or beeps. At the neural level, both groups computed Bayesian causal inference through dynamic encoding of independent estimates of the flash and beep counts, followed by estimates that flexibly combine audiovisual inputs. Our results demonstrate that the core neurocomputational mechanisms for audiovisual perceptual and causal inference in number estimation tasks are largely preserved in our limited sample of medicated post-acute individuals with schizophrenia. Future research should explore whether these findings generalize to unmedicated patients with acute psychotic symptoms.
精神病患者的幻觉和知觉异常被认为是由先前信息和感觉输入的不平衡整合引起的。我们将心理物理学、贝叶斯建模和脑电图(EEG)结合起来,研究了精神分裂症患者在接受药物治疗后对视听闪光-蜂鸣声序列的感知和因果推理的潜在变化。17 名精神分裂症患者和 23 名健康对照者报告了视听序列的闪光次数或蜂鸣声次数,这些序列在不同试验中的视听数字差异各不相同。两组患者都根据贝叶斯因果推理平衡了感觉整合和分离,而不是采用更简单的启发式方法。虽然精神分裂症组对信号因果结构的先验信息的权重略高,但两组对先验信息的权重相当。在神经层面上,两组患者都是通过对闪烁和蜂鸣声次数的独立估计进行动态编码,然后再结合视听输入进行灵活估计,从而计算出贝叶斯因果推理。我们的研究结果表明,在数量估计任务中,视听感知和因果推理的核心神经计算机制在我们有限的精神分裂症药物治疗后样本中得到了很大程度的保留。未来的研究应探讨这些发现是否适用于未服药的急性精神症状患者。
{"title":"Multisensory perceptual and causal inference is largely preserved in medicated post-acute individuals with schizophrenia","authors":"Tim Rohe, Klaus Hesse, Ann-Christine Ehlis, Uta Noppeney","doi":"10.1371/journal.pbio.3002790","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002790","url":null,"abstract":"Hallucinations and perceptual abnormalities in psychosis are thought to arise from imbalanced integration of prior information and sensory inputs. We combined psychophysics, Bayesian modeling, and electroencephalography (EEG) to investigate potential changes in perceptual and causal inference in response to audiovisual flash-beep sequences in medicated individuals with schizophrenia who exhibited limited psychotic symptoms. Seventeen participants with schizophrenia and 23 healthy controls reported either the number of flashes or the number of beeps of audiovisual sequences that varied in their audiovisual numeric disparity across trials. Both groups balanced sensory integration and segregation in line with Bayesian causal inference rather than resorting to simpler heuristics. Both also showed comparable weighting of prior information regarding the signals’ causal structure, although the schizophrenia group slightly overweighted prior information about the number of flashes or beeps. At the neural level, both groups computed Bayesian causal inference through dynamic encoding of independent estimates of the flash and beep counts, followed by estimates that flexibly combine audiovisual inputs. Our results demonstrate that the core neurocomputational mechanisms for audiovisual perceptual and causal inference in number estimation tasks are largely preserved in our limited sample of medicated post-acute individuals with schizophrenia. Future research should explore whether these findings generalize to unmedicated patients with acute psychotic symptoms.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A how-to guide for code sharing in biology 生物学代码共享指南
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1371/journal.pbio.3002815
Richard J. Abdill, Emma Talarico, Laura Grieneisen
In 2024, all biology is computational biology. Computer-aided analysis continues to spread into new fields, becoming more accessible to researchers trained in the wet lab who are eager to take advantage of growing datasets, falling costs, and novel assays that present new opportunities for discovery. It is currently much easier to find guidance for implementing these techniques than for reporting their use, leaving biologists to guess which details and files are relevant. In this essay, we review existing literature on the topic, summarize common tips, and link to additional resources for training. Following this overview, we then provide a set of recommendations for sharing code, with an eye toward guiding those who are comparatively new to applying open science principles to their computational work. Taken together, we provide a guide for biologists who seek to follow code sharing best practices but are unsure where to start.
2024 年,所有生物学都是计算生物学。计算机辅助分析不断扩展到新的领域,在湿法实验室接受过培训的研究人员越来越容易使用,他们渴望利用不断增长的数据集、不断下降的成本以及带来新发现机会的新型检测方法。目前,找到这些技术的实施指南比报告其使用情况要容易得多,生物学家只能猜测哪些细节和文件是相关的。在本文中,我们将回顾有关该主题的现有文献,总结常见技巧,并链接到其他培训资源。在概述之后,我们将提供一套共享代码的建议,旨在指导那些在计算工作中应用开放科学原则的新手。总之,我们为那些希望遵循代码共享最佳实践但又不知从何入手的生物学家提供了一份指南。
{"title":"A how-to guide for code sharing in biology","authors":"Richard J. Abdill, Emma Talarico, Laura Grieneisen","doi":"10.1371/journal.pbio.3002815","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002815","url":null,"abstract":"In 2024, all biology is computational biology. Computer-aided analysis continues to spread into new fields, becoming more accessible to researchers trained in the wet lab who are eager to take advantage of growing datasets, falling costs, and novel assays that present new opportunities for discovery. It is currently much easier to find guidance for implementing these techniques than for reporting their use, leaving biologists to guess which details and files are relevant. In this essay, we review existing literature on the topic, summarize common tips, and link to additional resources for training. Following this overview, we then provide a set of recommendations for sharing code, with an eye toward guiding those who are comparatively new to applying open science principles to their computational work. Taken together, we provide a guide for biologists who seek to follow code sharing best practices but are unsure where to start.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PP1 phosphatase controls both daughter cell formation and amylopectin levels in Toxoplasma gondii PP1 磷酸酶控制着弓形虫子细胞的形成和支链淀粉的水平
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1371/journal.pbio.3002791
Asma Sarah Khelifa, Maanasa Bhaskaran, Tom Boissavy, Thomas Mouveaux, Tatiana Araujo Silva, Cerina Chhuon, Marcia Attias, Ida Chiara Guerrera, Wanderley De Souza, David Dauvillee, Emmanuel Roger, Mathieu Gissot
Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite Toxoplasma gondii. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells’ inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.
类囊体寄生虫的致病力基于其快速分裂以产生大量生物量的能力。因此,细胞周期的调控是寄生虫致病的关键。磷酸化是一种关键的翻译后修饰,调节着真核细胞周期的许多方面。众所周知,磷酸酶 PP1 在真核生物的磷酸化平衡中发挥着重要作用。我们探索了 TgPP1 在弓形虫细胞周期中的作用。通过使用条件突变株,我们发现 TgPP1 调节着细胞周期的许多方面,包括子细胞内膜复合体(IMC)的正确组装、细胞器的分离以及核分裂。意想不到的是,TgPP1 的耗竭也会导致直链淀粉的积累,直链淀粉是一种储存多糖,通常存在于寄生虫的潜伏缓虫形态中。利用转录组学和磷酸蛋白组学,我们发现 TgPP1 主要通过翻译后机制发挥作用,使包括 IMC 蛋白在内的靶蛋白去磷酸化。TgPP1 还能使一种带有淀粉结合结构域的蛋白质去磷酸化。突变分析表明,目标磷酸化位点与寄生虫调节直链淀粉稳态水平的能力有关。因此,我们发现 TgPP1 在速生虫细胞周期调节过程中具有多方面的作用,而且还能调节直链淀粉的积累。
{"title":"PP1 phosphatase controls both daughter cell formation and amylopectin levels in Toxoplasma gondii","authors":"Asma Sarah Khelifa, Maanasa Bhaskaran, Tom Boissavy, Thomas Mouveaux, Tatiana Araujo Silva, Cerina Chhuon, Marcia Attias, Ida Chiara Guerrera, Wanderley De Souza, David Dauvillee, Emmanuel Roger, Mathieu Gissot","doi":"10.1371/journal.pbio.3002791","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002791","url":null,"abstract":"Virulence of apicomplexan parasites is based on their ability to divide rapidly to produce significant biomass. The regulation of their cell cycle is therefore key to their pathogenesis. Phosphorylation is a crucial posttranslational modification that regulates many aspects of the eukaryotic cell cycle. The phosphatase PP1 is known to play a major role in the phosphorylation balance in eukaryotes. We explored the role of TgPP1 during the cell cycle of the tachyzoite form of the apicomplexan parasite <jats:italic>Toxoplasma gondii</jats:italic>. Using a conditional mutant strain, we show that TgPP1 regulates many aspects of the cell cycle including the proper assembly of the daughter cells’ inner membrane complex (IMC), the segregation of organelles, and nuclear division. Unexpectedly, depletion of TgPP1 also results in the accumulation of amylopectin, a storage polysaccharide that is usually found in the latent bradyzoite form of the parasite. Using transcriptomics and phospho-proteomics, we show that TgPP1 mainly acts through posttranslational mechanisms by dephosphorylating target proteins including IMC proteins. TgPP1 also dephosphorylates a protein bearing a starch-binding domain. Mutagenesis analysis reveals that the targeted phospho-sites are linked to the ability of the parasite to regulate amylopectin steady-state levels. Therefore, we show that TgPP1 has pleiotropic roles during the tachyzoite cell cycle regulation, but also regulates amylopectin accumulation.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmodium NEK1 coordinates MTOC organisation and kinetochore attachment during rapid mitosis in male gamete formation 疟原虫 NEK1 在雄配子形成的快速有丝分裂过程中协调 MTOC 组织和着丝点附着
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1371/journal.pbio.3002802
Mohammad Zeeshan, Ravish Rashpa, David J. Ferguson, George Mckeown, Raushan Nugmanova, Amit K. Subudhi, Raphael Beyeler, Sarah L. Pashley, Robert Markus, Declan Brady, Magali Roques, Andrew R. Bottrill, Andrew M. Fry, Arnab Pain, Sue Vaughan, Anthony A. Holder, Eelco C. Tromer, Mathieu Brochet, Rita Tewari
Mitosis is an important process in the cell cycle required for cells to divide. Never in mitosis (NIMA)-like kinases (NEKs) are regulators of mitotic functions in diverse organisms. Plasmodium spp., the causative agent of malaria is a divergent unicellular haploid eukaryote with some unusual features in terms of its mitotic and nuclear division cycle that presumably facilitate proliferation in varied environments. For example, during the sexual stage of male gametogenesis that occurs within the mosquito host, an atypical rapid closed endomitosis is observed. Three rounds of genome replication from 1N to 8N and successive cycles of multiple spindle formation and chromosome segregation occur within 8 min followed by karyokinesis to generate haploid gametes. Our previous Plasmodium berghei kinome screen identified 4 Nek genes, of which 2, NEK2 and NEK4, are required for meiosis. NEK1 is likely to be essential for mitosis in asexual blood stage schizogony in the vertebrate host, but its function during male gametogenesis is unknown. Here, we study NEK1 location and function, using live cell imaging, ultrastructure expansion microscopy (U-ExM), and electron microscopy, together with conditional gene knockdown and proteomic approaches. We report spatiotemporal NEK1 location in real-time, coordinated with microtubule organising centre (MTOC) dynamics during the unusual mitoses at various stages of the Plasmodium spp. life cycle. Knockdown studies reveal NEK1 to be an essential component of the MTOC in male cell differentiation, associated with rapid mitosis, spindle formation, and kinetochore attachment. These data suggest that P. berghei NEK1 kinase is an important component of MTOC organisation and essential regulator of chromosome segregation during male gamete formation.
有丝分裂是细胞分裂所需的细胞周期中的一个重要过程。绝不有丝分裂(NIMA)样激酶(NEKs)是多种生物有丝分裂功能的调节因子。疟疾的致病菌疟原虫是一种分化的单细胞单倍体真核生物,其有丝分裂和核分裂周期具有一些不同寻常的特征,这些特征可能有利于其在不同环境中增殖。例如,在蚊子宿主体内雄性配子发生的有性阶段,观察到一种非典型的快速封闭内配现象。在 8 分钟内进行了从 1N 到 8N 的三轮基因组复制,以及连续的多纺锤体形成和染色体分离循环,然后进行核运动,产生单倍体配子。我们之前的疟原虫激酶组筛选发现了 4 个 Nek 基因,其中 NEK2 和 NEK4 这两个基因是减数分裂所必需的。在脊椎动物宿主的无性血液阶段分裂过程中,NEK1可能是有丝分裂所必需的,但其在雄性配子发生过程中的功能尚不清楚。在这里,我们利用活细胞成像、超微结构扩展显微镜(U-ExM)和电子显微镜,以及条件基因敲除和蛋白质组学方法研究了 NEK1 的位置和功能。我们实时报告了 NEK1 在疟原虫生命周期各阶段不寻常有丝分裂过程中与微管组织中心(MTOC)动态相协调的时空位置。基因敲除研究显示 NEK1 是雄性细胞分化过程中 MTOC 的重要组成部分,与快速有丝分裂、纺锤体形成和动核附着有关。这些数据表明,疟原虫 NEK1 激酶是 MTOC 组织的重要组成部分,也是雄配子形成过程中染色体分离的重要调节因子。
{"title":"Plasmodium NEK1 coordinates MTOC organisation and kinetochore attachment during rapid mitosis in male gamete formation","authors":"Mohammad Zeeshan, Ravish Rashpa, David J. Ferguson, George Mckeown, Raushan Nugmanova, Amit K. Subudhi, Raphael Beyeler, Sarah L. Pashley, Robert Markus, Declan Brady, Magali Roques, Andrew R. Bottrill, Andrew M. Fry, Arnab Pain, Sue Vaughan, Anthony A. Holder, Eelco C. Tromer, Mathieu Brochet, Rita Tewari","doi":"10.1371/journal.pbio.3002802","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002802","url":null,"abstract":"Mitosis is an important process in the cell cycle required for cells to divide. Never in mitosis (NIMA)-like kinases (NEKs) are regulators of mitotic functions in diverse organisms. <jats:italic>Plasmodium</jats:italic> spp., the causative agent of malaria is a divergent unicellular haploid eukaryote with some unusual features in terms of its mitotic and nuclear division cycle that presumably facilitate proliferation in varied environments. For example, during the sexual stage of male gametogenesis that occurs within the mosquito host, an atypical rapid closed endomitosis is observed. Three rounds of genome replication from 1N to 8N and successive cycles of multiple spindle formation and chromosome segregation occur within 8 min followed by karyokinesis to generate haploid gametes. Our previous <jats:italic>Plasmodium berghei</jats:italic> kinome screen identified 4 <jats:italic>Nek</jats:italic> genes, of which 2, NEK2 and NEK4, are required for meiosis. NEK1 is likely to be essential for mitosis in asexual blood stage schizogony in the vertebrate host, but its function during male gametogenesis is unknown. Here, we study NEK1 location and function, using live cell imaging, ultrastructure expansion microscopy (U-ExM), and electron microscopy, together with conditional gene knockdown and proteomic approaches. We report spatiotemporal NEK1 location in real-time, coordinated with microtubule organising centre (MTOC) dynamics during the unusual mitoses at various stages of the <jats:italic>Plasmodium</jats:italic> spp. life cycle. Knockdown studies reveal NEK1 to be an essential component of the MTOC in male cell differentiation, associated with rapid mitosis, spindle formation, and kinetochore attachment. These data suggest that <jats:italic>P</jats:italic>. <jats:italic>berghei</jats:italic> NEK1 kinase is an important component of MTOC organisation and essential regulator of chromosome segregation during male gamete formation.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetic basis of the kākāpō structural color polymorphism suggests balancing selection by an extinct apex predator. kākāpō结构颜色多态性的遗传基础表明,一种已灭绝的顶级掠食者进行了平衡选择。
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-10 DOI: 10.1371/journal.pbio.3002755
Lara Urban,Anna W Santure,Lydia Uddstrom,Andrew Digby,Deidre Vercoe,Daryl Eason,Jodie Crane,,Matthew J Wylie,Tāne Davis,Marissa F LeLec,Joseph Guhlin,Simon Poulton,Jon Slate,Alana Alexander,Patricia Fuentes-Cross,Peter K Dearden,Neil J Gemmell,Farhan Azeem,Marvin Weyland,Harald G L Schwefel,Cock van Oosterhout,Hernán E Morales
The information contained in population genomic data can tell us much about the past ecology and evolution of species. We leveraged detailed phenotypic and genomic data of nearly all living kākāpō to understand the evolution of its feather color polymorphism. The kākāpō is an endangered and culturally significant parrot endemic to Aotearoa New Zealand, and the green and olive feather colorations are present at similar frequencies in the population. The presence of such a neatly balanced color polymorphism is remarkable because the entire population currently numbers less than 250 birds, which means it has been exposed to severe genetic drift. We dissected the color phenotype, demonstrating that the two colors differ in their light reflectance patterns due to differential feather structure. We used quantitative genomics methods to identify two genetic variants whose epistatic interaction can fully explain the species' color phenotype. Our genomic forward simulations show that balancing selection might have been pivotal to establish the polymorphism in the ancestrally large population, and to maintain it during population declines that involved a severe bottleneck. We hypothesize that an extinct apex predator was the likely agent of balancing selection, making the color polymorphism in the kākāpō a "ghost of selection past."
种群基因组数据中包含的信息可以告诉我们很多关于物种过去的生态学和进化的信息。我们利用几乎所有现存卡帕鸟的详细表型和基因组数据来了解其羽毛颜色多态性的演变。kākāpō是新西兰奥特亚罗瓦特有的一种濒危鹦鹉,具有重要的文化意义。由于目前整个种群的数量不足 250 只,这意味着该种群已经遭受了严重的遗传漂变,因此出现这种整齐平衡的颜色多态性是非常难能可贵的。我们对颜色表型进行了剖析,证明两种颜色的光反射模式不同是由于羽毛结构不同造成的。我们利用定量基因组学方法确定了两个遗传变异,这两个变异的表观相互作用可以完全解释该物种的颜色表型。我们的基因组正向模拟显示,平衡选择可能是在祖先庞大的种群中建立多态性的关键,并在涉及严重瓶颈的种群衰退过程中维持多态性。我们假设,一种已灭绝的顶级捕食者可能是平衡选择的媒介,从而使 kākāpō 中的颜色多态性成为 "过去选择的幽灵"。
{"title":"The genetic basis of the kākāpō structural color polymorphism suggests balancing selection by an extinct apex predator.","authors":"Lara Urban,Anna W Santure,Lydia Uddstrom,Andrew Digby,Deidre Vercoe,Daryl Eason,Jodie Crane,,Matthew J Wylie,Tāne Davis,Marissa F LeLec,Joseph Guhlin,Simon Poulton,Jon Slate,Alana Alexander,Patricia Fuentes-Cross,Peter K Dearden,Neil J Gemmell,Farhan Azeem,Marvin Weyland,Harald G L Schwefel,Cock van Oosterhout,Hernán E Morales","doi":"10.1371/journal.pbio.3002755","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002755","url":null,"abstract":"The information contained in population genomic data can tell us much about the past ecology and evolution of species. We leveraged detailed phenotypic and genomic data of nearly all living kākāpō to understand the evolution of its feather color polymorphism. The kākāpō is an endangered and culturally significant parrot endemic to Aotearoa New Zealand, and the green and olive feather colorations are present at similar frequencies in the population. The presence of such a neatly balanced color polymorphism is remarkable because the entire population currently numbers less than 250 birds, which means it has been exposed to severe genetic drift. We dissected the color phenotype, demonstrating that the two colors differ in their light reflectance patterns due to differential feather structure. We used quantitative genomics methods to identify two genetic variants whose epistatic interaction can fully explain the species' color phenotype. Our genomic forward simulations show that balancing selection might have been pivotal to establish the polymorphism in the ancestrally large population, and to maintain it during population declines that involved a severe bottleneck. We hypothesize that an extinct apex predator was the likely agent of balancing selection, making the color polymorphism in the kākāpō a \"ghost of selection past.\"","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fixing science means an end to gaming the system 解决科学问题意味着杜绝系统游戏
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-09 DOI: 10.1371/journal.pbio.3002816
Nicholas J. L. Brown
During the last decade, there has been a substantial acceleration in the open science movement. Most people would probably hope to have seen signs of positive change in that time, yet it seems that the process of improving the practice of science is moving at a glacial pace.
过去十年间,开放科学运动的发展速度大大加快。大多数人可能都希望在这段时间里看到积极变化的迹象,然而,改善科学实践的进程似乎进展缓慢。
{"title":"Fixing science means an end to gaming the system","authors":"Nicholas J. L. Brown","doi":"10.1371/journal.pbio.3002816","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002816","url":null,"abstract":"During the last decade, there has been a substantial acceleration in the open science movement. Most people would probably hope to have seen signs of positive change in that time, yet it seems that the process of improving the practice of science is moving at a glacial pace.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To transfer mitochondria or not to transfer mitochondria: ADP does the trick 转移线粒体还是不转移线粒体?ADP 起作用
IF 9.8 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-15 DOI: 10.1371/journal.pbio.3002754
Jaromir Novak, Jiri Neuzil
Horizontal mitochondrial transfer (HMT) has emerged as a novel phenomenon in cell biology, but it is unclear how this process of intercellular movement of mitochondria is regulated. A new study in PLOS Biology reports that ADP released by stressed cells is a signal that triggers HMT.
线粒体水平转移(HMT)已成为细胞生物学中的一种新现象,但目前还不清楚线粒体的这种细胞间移动过程是如何调控的。PLOS Biology 上的一项新研究报告说,受压细胞释放的 ADP 是触发 HMT 的信号。
{"title":"To transfer mitochondria or not to transfer mitochondria: ADP does the trick","authors":"Jaromir Novak, Jiri Neuzil","doi":"10.1371/journal.pbio.3002754","DOIUrl":"https://doi.org/10.1371/journal.pbio.3002754","url":null,"abstract":"Horizontal mitochondrial transfer (HMT) has emerged as a novel phenomenon in cell biology, but it is unclear how this process of intercellular movement of mitochondria is regulated. A new study in <jats:italic>PLOS Biology</jats:italic> reports that ADP released by stressed cells is a signal that triggers HMT.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage 激酶Rio1和核糖体碰撞依赖性衰变途径调查18S rRNA裂解的完整性
IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-25 DOI: 10.1371/journal.pbio.3001767
Melissa D. Parker, Elise S. Brunk, Adam J. Getzler, Katrin Karbstein
The 18S rRNA sequence is highly conserved, particularly at its 3′-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3′-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3′-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3′-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
18S rRNA 序列高度保守,尤其是其 3′端,由内切酶 Nob1 形成。Nob1 如何识别其目标序列尚不清楚,体外实验表明 Nob1 容易出错。此外,3′端附近的序列与附近的类似位点是退化的。在这里,我们利用酵母遗传学、生物化学和下一代测序技术研究了 ATPase Rio1 在监控 18S rRNA 3′端准确性方面的作用。我们证明,Nob1 可误裂其 rRNA 底物,而误裂的 rRNA 会在绕过 Rio1 介导的质量控制(QC)步骤后积累,但在具有完整 QC 机制的健康细胞中则不会。从机理上讲,我们发现 Rio1 与误解的 rRNA 的结合力弱于其与精确处理的 18S rRNA 的结合力。因此,过量的 Rio1 会导致误解的 rRNA 积累。含有被错误处理的 rRNA 的核糖体可以进行翻译,尽管翻译速度较慢,从而导致与尾随核糖体的碰撞。这些碰撞导致有缺陷的核糖体利用 mRNA QC 机器的一部分进行降解。总之,这些数据支持这样一个模型,即 Rio1 检查新生 18S rRNA 的 3′-端,以防止含有误切 18S rRNA 的核糖体错误地参与翻译,在翻译过程中引起核糖体碰撞。数据还证明了核糖体碰撞是如何纯化细胞中具有不同功能的核糖体的,这对核糖体异质性的概念具有重要意义。
{"title":"The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage","authors":"Melissa D. Parker, Elise S. Brunk, Adam J. Getzler, Katrin Karbstein","doi":"10.1371/journal.pbio.3001767","DOIUrl":"https://doi.org/10.1371/journal.pbio.3001767","url":null,"abstract":"The 18S rRNA sequence is highly conserved, particularly at its 3′-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3′-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3′-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3′-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.","PeriodicalId":20240,"journal":{"name":"PLoS Biology","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141195096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
PLoS Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1