{"title":"Development and clinical implementation of a digital system for risk assessments for radiation therapy","authors":"","doi":"10.1016/j.zemedi.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Before introducing new treatment techniques, an investigation of hazards due to unintentional radiation exposures is a reasonable activity for proactively increasing patient safety. As dedicated software is scarce, we developed a tool for risk assessment to design a quality management program based on best practice methods, i.e., process mapping, failure modes and effects analysis and fault tree analysis. Implemented as a web database application, a single dataset was used to describe the treatment process and its failure modes. The design of the system and dataset allowed failure modes to be represented both visually as fault trees and in a tabular form. Following the commissioning of the software for our department, previously conducted risk assessments were migrated to the new system after being fully re-assessed which revealed a shift in risk priorities. Furthermore, a weighting factor was investigated to bring risk levels of the migrated assessments into perspective. The compensation did not affect high priorities but did re-prioritize in the midrange of the ranking. We conclude that the tool is suitable to conduct multiple risk assessments and concomitantly keep track of the overall quality management activities.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 3","pages":"Pages 371-383"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000922/pdfft?md5=2c3be2cbda2c97bb47ce7e968801481d&pid=1-s2.0-S0939388923000922-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000922","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Before introducing new treatment techniques, an investigation of hazards due to unintentional radiation exposures is a reasonable activity for proactively increasing patient safety. As dedicated software is scarce, we developed a tool for risk assessment to design a quality management program based on best practice methods, i.e., process mapping, failure modes and effects analysis and fault tree analysis. Implemented as a web database application, a single dataset was used to describe the treatment process and its failure modes. The design of the system and dataset allowed failure modes to be represented both visually as fault trees and in a tabular form. Following the commissioning of the software for our department, previously conducted risk assessments were migrated to the new system after being fully re-assessed which revealed a shift in risk priorities. Furthermore, a weighting factor was investigated to bring risk levels of the migrated assessments into perspective. The compensation did not affect high priorities but did re-prioritize in the midrange of the ranking. We conclude that the tool is suitable to conduct multiple risk assessments and concomitantly keep track of the overall quality management activities.
期刊介绍:
Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing.
Focuses of the articles are:
-Biophysical methods in radiation therapy and nuclear medicine
-Dosimetry and radiation protection
-Radiological diagnostics and quality assurance
-Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography
-Ultrasonography diagnostics, application of laser and UV rays
-Electronic processing of biosignals
-Artificial intelligence and machine learning in medical physics
In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.