首页 > 最新文献

Zeitschrift fur Medizinische Physik最新文献

英文 中文
Rapid whole-brain quantitative MT imaging 快速全脑定量MT成像。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2023.02.005
Roya Afshari , Francesco Santini , Rahel Heule , Craig H. Meyer , Josef Pfeuffer , Oliver Bieri

Purpose

To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times.

Methods

Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B1 and-T1 mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB0) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, kf, and their transverse relaxation time, T2r.

Results

Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B1-correction was essential for all investigated sets, whereas ΔB0-correction showed limited bias for the observed maximum off-resonances at 3 T.

Conclusion

The combination of rapid B1-T1 mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.
目的:提供一种不受长采集时间限制的可靠的全脑定量磁化转移(MT)成像方法。方法:采用两种螺旋二维交错多层失稳梯度回波(SPGR)序列,在3 t时对大脑进行快速定量MT成像。采用双翻转角度、稳态制备的双对比度方法,结合在不同饱和翻转角度(50°至850°)和偏移频率(1 kHz和10 kHz)范围内的单对比度MT制备采集,进行B1和t1组合成像。获得了5组不同mt权重的扫描(包含最少6到最多18次扫描)。此外,通过两次不同回波时间的笛卡尔低分辨率二维SPGR扫描测量了主磁场不均匀性(ΔB0)。使用双池连续波模型分析从所有集合中获得定量MT模型参数,得到池大小比F、它们的汇率kf和它们的横向弛豫时间T2r。结果:全脑定量MT成像对所有集都是可行的,总采集时间从7:15分钟到3:15分钟不等。为了准确建模,b1校正对所有研究集都是必不可少的,而ΔB0-correction对观察到的最大非共振在3t时显示有限的偏差。快速B1-T1定位与二维多层螺旋SPGR研究序列的MT加权成像相结合,为临床快速全脑定量MT成像提供了良好的前景。
{"title":"Rapid whole-brain quantitative MT imaging","authors":"Roya Afshari ,&nbsp;Francesco Santini ,&nbsp;Rahel Heule ,&nbsp;Craig H. Meyer ,&nbsp;Josef Pfeuffer ,&nbsp;Oliver Bieri","doi":"10.1016/j.zemedi.2023.02.005","DOIUrl":"10.1016/j.zemedi.2023.02.005","url":null,"abstract":"<div><h3>Purpose</h3><div>To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times.</div></div><div><h3>Methods</h3><div>Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B<sub>1</sub> and-T<sub>1</sub> mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB<sub>0</sub>) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, k<sub>f</sub>, and their transverse relaxation time, T<sub>2r</sub>.</div></div><div><h3>Results</h3><div>Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B<sub>1</sub>-correction was essential for all investigated sets, whereas ΔB<sub>0</sub>-correction showed limited bias for the observed maximum off-resonances at 3 T.</div></div><div><h3>Conclusion</h3><div>The combination of rapid B<sub>1</sub>-T<sub>1</sub> mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.</div></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Pages 69-77"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9252608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “The role of Monte Carlo simulation in understanding the performance of proton computed tomography” [Z Med Phys 32 (2022) 23–38] 对 "蒙特卡罗模拟在了解质子计算机断层扫描性能方面的作用 "的勘误 [Z Med Phys 32 (2022) 23-38]。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.07.012
George Dedes , Jannis Dickmann , Valentina Giacometti , Simon Rit , Nils Krah , Sebastian Meyer , Vladimir Bashkirov , Reinhard Schulte , Robert P. Johnson , Katia Parodi , Guillaume Landry
{"title":"Erratum to “The role of Monte Carlo simulation in understanding the performance of proton computed tomography” [Z Med Phys 32 (2022) 23–38]","authors":"George Dedes ,&nbsp;Jannis Dickmann ,&nbsp;Valentina Giacometti ,&nbsp;Simon Rit ,&nbsp;Nils Krah ,&nbsp;Sebastian Meyer ,&nbsp;Vladimir Bashkirov ,&nbsp;Reinhard Schulte ,&nbsp;Robert P. Johnson ,&nbsp;Katia Parodi ,&nbsp;Guillaume Landry","doi":"10.1016/j.zemedi.2024.07.012","DOIUrl":"10.1016/j.zemedi.2024.07.012","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Page 109"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Volumetric 23Na single and triple-quantum imaging at 7T: 3D-CRISTINA” [Z Med Phys 32 (2022) 199–208] 对 "7T 下的容积 23Na 单量子和三量子成像:3D-CRISTINA "的勘误 [Z Med Phys 32 (2022) 199-208]。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.07.008
Michaela A.U. Hoesl , Lothar R. Schad , Stanislas Rapacchi
{"title":"Erratum to “Volumetric 23Na single and triple-quantum imaging at 7T: 3D-CRISTINA” [Z Med Phys 32 (2022) 199–208]","authors":"Michaela A.U. Hoesl ,&nbsp;Lothar R. Schad ,&nbsp;Stanislas Rapacchi","doi":"10.1016/j.zemedi.2024.07.008","DOIUrl":"10.1016/j.zemedi.2024.07.008","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Page 113"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation 利用速度选择性 ASL 结合前瞻性运动补偿进行非对比自由呼吸肝脏灌注成像。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.06.001
Ke Zhang , Simon M.F. Triphan , Mark O. Wielpütz , Christian H. Ziener , Mark E. Ladd , Heinz-Peter Schlemmer , Hans-Ulrich Kauczor , Oliver Sedlaczek , Felix T. Kurz

Purpose

To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free–breathing liver perfusion measurement without contrast agent.

Methods

Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery.

Results

The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ± 18.44% for control images, and 29.89 ± 20.83% for label images (p < 0.001). The resulting maps of normalized ASL signal (normalized to M0) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques.

Conclusions

This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.
目的:将速度选择性动脉自旋标记(VSASL)与基于导航仪的前瞻性运动补偿方法相结合,用于不使用造影剂的自由呼吸肝脏灌注测量:方法:采用锌调制速度选择性反转(sinc-VSI)脉冲作为标记和控制脉冲。为了考虑呼吸运动,采用了一个导航仪,其形式为单个梯度回波投影读数,位于膈肌沿下-上方向。在基于自旋回波 EPI 的读数的每个横向成像切片之前,都加入了导航仪和脂肪抑制。从导航仪获取运动数据并传回序列,以便实时调整切片定位。VSASL 采用的 sinc-VSI 在控制条件下没有速度选择梯度,但在标记时沿所有三个方向都有速度选择梯度。VSASL 与伪连续 ASL(pseudo-continuous ASL,pCASL)方法进行了比较,后者是通过放置在门静脉和肝动脉处的标记平面选择性标记移动的自旋:结果:利用导航信号可有效计算呼吸活动引起的运动。与屏气(BH)相比,NAV中平均肝脏体素的变异系数(CoV)明显降低,对照图像平均降低29.4±18.44%,标签图像平均降低29.89±20.83%(P 0),与NAV补偿的pCASL技术相比,NAV补偿的VSASL显示出明显更高的灌注权重:这项研究证明了将基于导航仪的前瞻性运动补偿技术与 VSASL 结合使用,在不使用造影剂、允许自由呼吸的情况下测量肝脏灌注的可行性。
{"title":"Non-contrast free-breathing liver perfusion imaging using velocity selective ASL combined with prospective motion compensation","authors":"Ke Zhang ,&nbsp;Simon M.F. Triphan ,&nbsp;Mark O. Wielpütz ,&nbsp;Christian H. Ziener ,&nbsp;Mark E. Ladd ,&nbsp;Heinz-Peter Schlemmer ,&nbsp;Hans-Ulrich Kauczor ,&nbsp;Oliver Sedlaczek ,&nbsp;Felix T. Kurz","doi":"10.1016/j.zemedi.2024.06.001","DOIUrl":"10.1016/j.zemedi.2024.06.001","url":null,"abstract":"<div><h3>Purpose</h3><div>To apply velocity selective arterial spin labeling (VSASL) combined with a navigator-based (NAV) prospective motion compensation method for a free–breathing liver perfusion measurement without contrast agent.</div></div><div><h3>Methods</h3><div>Sinc-modulated Velocity Selective Inversion (sinc-VSI) pulses were applied as labeling and control pulses. In order to account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI based readouts, navigator and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. The sinc-VSI without velocity-selective gradients during the control condition but with velocity-selective gradients along all three directions during labeling was chosen for the VSASL. The VSASL was compared with pseudo-continuous ASL (pCASL) methods, which selectively tagged the moving spins using a tagging plane placed at the portal vein and hepatic artery.</div></div><div><h3>Results</h3><div>The motion caused by respiratory activity was effectively computed using the navigator signal. The coefficients of variation (CoV) of average liver voxel in NAV were significantly decreased when compared to breath-hold (BH), with an average reduction of 29.4 ± 18.44% for control images, and 29.89 ± 20.83% for label images (p &lt; 0.001). The resulting maps of normalized ASL signal (normalized to M<sub>0</sub>) showed significantly higher perfusion weightings in the NAV-compensated VSASL, when compared to the NAV-compensated pCASL techniques.</div></div><div><h3>Conclusions</h3><div>This study demonstrates the feasibility of using a navigator-based prospective motion compensation technique in conjunction with VSASL for the measurement of liver perfusion without the use of contrast agents while allowing for free-breathing.</div></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Pages 87-97"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?” [Z Med Phys 32 (2022) 361–368] 对 "生成式对抗网络能否帮助克服分割中的数据有限问题?"的勘误 [Z Med Phys 32 (2022) 361-368].[Z Med Phys 32 (2022) 361-368].
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.07.006
Gerd Heilemann , Mark Matthewman , Peter Kuess , Gregor Goldner , Joachim Widder , Dietmar Georg , Lukas Zimmermann
{"title":"Erratum to “Can Generative Adversarial Networks help to overcome the limited data problem in segmentation?” [Z Med Phys 32 (2022) 361–368]","authors":"Gerd Heilemann ,&nbsp;Mark Matthewman ,&nbsp;Peter Kuess ,&nbsp;Gregor Goldner ,&nbsp;Joachim Widder ,&nbsp;Dietmar Georg ,&nbsp;Lukas Zimmermann","doi":"10.1016/j.zemedi.2024.07.006","DOIUrl":"10.1016/j.zemedi.2024.07.006","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Page 115"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers” [Z Med Phys 32 (2022) 52–62] 基于表面标记光学跟踪的呼吸门控 PBS 质子治疗新方案的调试和质量保证》[Z Med Phys 32 (2022) 52-62] 勘误。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.07.011
Giovanni Fattori , Jan Hrbacek , Harald Regele , Christian Bula , Alexandre Mayor , Stefan Danuser , David C. Oxley , Urs Rechsteiner , Martin Grossmann , Riccardo Via , Till T. Böhlen , Alessandra Bolsi , Marc Walser , Michele Togno , Emma Colvill , Daniel Lempen , Damien C. Weber , Antony J. Lomax , Sairos Safai
{"title":"Erratum to “Commissioning and quality assurance of a novel solution for respiratory-gated PBS proton therapy based on optical tracking of surface markers” [Z Med Phys 32 (2022) 52–62]","authors":"Giovanni Fattori ,&nbsp;Jan Hrbacek ,&nbsp;Harald Regele ,&nbsp;Christian Bula ,&nbsp;Alexandre Mayor ,&nbsp;Stefan Danuser ,&nbsp;David C. Oxley ,&nbsp;Urs Rechsteiner ,&nbsp;Martin Grossmann ,&nbsp;Riccardo Via ,&nbsp;Till T. Böhlen ,&nbsp;Alessandra Bolsi ,&nbsp;Marc Walser ,&nbsp;Michele Togno ,&nbsp;Emma Colvill ,&nbsp;Daniel Lempen ,&nbsp;Damien C. Weber ,&nbsp;Antony J. Lomax ,&nbsp;Sairos Safai","doi":"10.1016/j.zemedi.2024.07.011","DOIUrl":"10.1016/j.zemedi.2024.07.011","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Page 110"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Free-breathing half-radial dual-echo balanced steady-state free precession thoracic imaging with wobbling Archimedean spiral pole trajectories” [Z Med. Phys. 33 (2023) 220–229] 自由呼吸半径向双回波平衡稳态自由预处理胸部成像与摆动阿基米德螺旋极轨迹》的勘误[Z Med. Phys. 33 (2023) 220-229]。
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.07.003
Oliver Bieri , Orso Pusterla , Grzegorz Bauman
{"title":"Erratum to “Free-breathing half-radial dual-echo balanced steady-state free precession thoracic imaging with wobbling Archimedean spiral pole trajectories” [Z Med. Phys. 33 (2023) 220–229]","authors":"Oliver Bieri ,&nbsp;Orso Pusterla ,&nbsp;Grzegorz Bauman","doi":"10.1016/j.zemedi.2024.07.003","DOIUrl":"10.1016/j.zemedi.2024.07.003","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Page 117"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quo Vadis MRI?
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2024.12.002
Jürgen Hennig
{"title":"Quo Vadis MRI?","authors":"Jürgen Hennig","doi":"10.1016/j.zemedi.2024.12.002","DOIUrl":"10.1016/j.zemedi.2024.12.002","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Pages 3-5"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Celebrating 35 Years of Zeitschrift für Medizinische Physik
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2025.01.001
Jürgen R. Reichenbach (Editor-in-Chief)
{"title":"Celebrating 35 Years of Zeitschrift für Medizinische Physik","authors":"Jürgen R. Reichenbach (Editor-in-Chief)","doi":"10.1016/j.zemedi.2025.01.001","DOIUrl":"10.1016/j.zemedi.2025.01.001","url":null,"abstract":"","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Pages 1-2"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quo Vadis Hyperpolarized 13C MRI? 超极化 13C 核磁共振成像的现状如何?
IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2025-02-01 DOI: 10.1016/j.zemedi.2023.10.004
Pascal Wodtke , Martin Grashei , Franz Schilling
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
在过去的二十年里,超极化 13C MRI 在临床前和临床研究中都获得了重要的地位,这依赖于 PHIP-SAH(副氢诱导极化-侧臂氢化)、SABRE(可逆交换信号放大)和 dDNP(溶解动态核极化)等技术,其中 dDNP 已应用于人体。尽管存在成本高、极化速度慢等挑战,但临床 dDNP 极化器已在 24 个地点开展了研究。SABRE 和 PHIP 等基于对氢的技术提供了更快、更具成本效益的替代方法,但需要针对特定分子进行优化。重点一直放在超极化探针的成像代谢上,这需要长 T1、高极化和快速生成对比度。目前正在努力建立新型探针、改进采集技术和增强数据分析方法(包括人工智能)。超极化 13C 磁共振成像的潜在临床价值主要体现在肿瘤学的治疗反应评估上,同时也体现在心脏病学、肾脏病学、肝脏病学和中枢神经系统特征描述上。在这篇关于生物医学超极化 13C MRI 的综述中,我们总结了极化技术、探针开发、采集和分析方法以及临床试验方面的重要最新进展。从这些进展出发,我们试图勾勒出生物医学超极化 13C MRI 领域的发展轨迹。
{"title":"Quo Vadis Hyperpolarized 13C MRI?","authors":"Pascal Wodtke ,&nbsp;Martin Grashei ,&nbsp;Franz Schilling","doi":"10.1016/j.zemedi.2023.10.004","DOIUrl":"10.1016/j.zemedi.2023.10.004","url":null,"abstract":"<div><div>Over the last two decades, hyperpolarized <sup>13</sup>C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long <em>T<sub>1</sub></em>, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized <sup>13</sup>C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized <sup>13</sup>C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized <sup>13</sup>C MRI might go.</div></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"35 1","pages":"Pages 8-32"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Zeitschrift fur Medizinische Physik
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1