Norris Lam, Richard Finney, Shicheng Yang, Stephanie Choi, Xiaolin Wu, Lauren Cutmore, Jorge Andrade, Lei Huang, Christina Amatya, Margaret Cam, James N Kochenderfer
{"title":"Development of a bicistronic anti-CD19/CD20 CAR construct including abrogation of unexpected nucleic acid sequence deletions.","authors":"Norris Lam, Richard Finney, Shicheng Yang, Stephanie Choi, Xiaolin Wu, Lauren Cutmore, Jorge Andrade, Lei Huang, Christina Amatya, Margaret Cam, James N Kochenderfer","doi":"10.1016/j.omto.2023.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>To address CD19 loss from lymphoma after anti-CD19 chimeric antigen receptor (CAR) T cell therapy, we designed a bicistronic construct encoding an anti-CD19 CAR and an anti-CD20 CAR. We detected deletions from the expected bicistronic construct sequence in a minority of transcripts by mRNA sequencing. Loss of bicistronic construct transgene DNA was also detected. Deletions of sequence were present at much higher frequencies in transduced T cell mRNA versus gamma-retroviral vector RNA. We concluded that these deletions were caused by intramolecular template switching of the reverse transcriptase enzyme during reverse transcription of gamma-retroviral vector RNA into transgene DNA of transduced T cells. Intramolecular template switching was driven by repeated regions of highly similar nucleic acid sequence within CAR sequences. We optimized the sequence of the bicistronic CAR construct to reduce repeated regions of highly similar sequences. This optimization nearly eliminated sequence deletions. This work shows that repeated regions of highly similar nucleic acid sequence must be avoided in complex CAR constructs. We further optimized the bicistronic construct by lengthening the linker of the anti-CD20 single-chain variable fragment. This modification increased CD20-specific interleukin-2 release and reduced CD20-specific activation-induced cell death. We selected an optimized anti-CD19/CD20 bicistronic construct for clinical development.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"30 ","pages":"132-149"},"PeriodicalIF":5.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/36/9a/main.PMC10465854.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2023.07.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address CD19 loss from lymphoma after anti-CD19 chimeric antigen receptor (CAR) T cell therapy, we designed a bicistronic construct encoding an anti-CD19 CAR and an anti-CD20 CAR. We detected deletions from the expected bicistronic construct sequence in a minority of transcripts by mRNA sequencing. Loss of bicistronic construct transgene DNA was also detected. Deletions of sequence were present at much higher frequencies in transduced T cell mRNA versus gamma-retroviral vector RNA. We concluded that these deletions were caused by intramolecular template switching of the reverse transcriptase enzyme during reverse transcription of gamma-retroviral vector RNA into transgene DNA of transduced T cells. Intramolecular template switching was driven by repeated regions of highly similar nucleic acid sequence within CAR sequences. We optimized the sequence of the bicistronic CAR construct to reduce repeated regions of highly similar sequences. This optimization nearly eliminated sequence deletions. This work shows that repeated regions of highly similar nucleic acid sequence must be avoided in complex CAR constructs. We further optimized the bicistronic construct by lengthening the linker of the anti-CD20 single-chain variable fragment. This modification increased CD20-specific interleukin-2 release and reduced CD20-specific activation-induced cell death. We selected an optimized anti-CD19/CD20 bicistronic construct for clinical development.
期刊介绍:
Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.