Pub Date : 2023-12-03DOI: 10.1016/j.omto.2023.100753
Yanqi Ye, Nanhai G. Chen
Abstract not available
摘要不可用
{"title":"miR-146a: Overcoming coldness in ovarian cancer","authors":"Yanqi Ye, Nanhai G. Chen","doi":"10.1016/j.omto.2023.100753","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100753","url":null,"abstract":"Abstract not available","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"33 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1016/j.omto.2023.100757
Abstract not available
摘要不可用
{"title":"Thank you to our 2023 reviewers","authors":"","doi":"10.1016/j.omto.2023.100757","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100757","url":null,"abstract":"Abstract not available","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"232 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1016/j.omto.2023.100754
Jacob L. Léger, Lee-Hwa Tai
Abstract not available
摘要不可用
{"title":"Gaining insights into virotherapy with canine models","authors":"Jacob L. Léger, Lee-Hwa Tai","doi":"10.1016/j.omto.2023.100754","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100754","url":null,"abstract":"Abstract not available","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"232 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EVs (Extracellular vesicles) carry DNA, RNA, protein and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. TNBC (Triple-negative breast cancer) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the TME (tumor microenvironment) via EVs. In this article, we describe the roles of EVs in tumor immune microenvironment, metabolic microenvironment and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
{"title":"The Role and Application of Vesicles in Triple-negative Breast Cancer: Opportunities and Challenges","authors":"Ya-Nan Wei, Chun-Yan Yan, Meng-Lu Zhao, Xi-He Zhao","doi":"10.1016/j.omto.2023.100752","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100752","url":null,"abstract":"<p>EVs (Extracellular vesicles) carry DNA, RNA, protein and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. TNBC (Triple-negative breast cancer) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the TME (tumor microenvironment) via EVs. In this article, we describe the roles of EVs in tumor immune microenvironment, metabolic microenvironment and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"1997 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-20DOI: 10.1016/j.omto.2023.100751
Justin C. Boucher, Bishwas Shrestha, Paresh Vishwasrao, Mark Leick, Estelle V. Cervantes, Tayyebb Ghafoor, Kayla Reid, Kristen Spitler, Bin Yu, Brian C. Betts, Jose A. Guevara-Patino, Marcela V. Maus, Marco L. Davila
CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an “AND” logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.
CD33和CD123在人急性髓性白血病细胞和其他非癌组织(如造血干细胞)表面表达。靶外肿瘤毒性可能限制靶向CD33和CD123的嵌合抗原受体T细胞疗法。为了克服这一限制,我们开发了具有“与”逻辑门的双特异性人CD33/CD123嵌合抗原受体(CAR) T细胞。我们利用结合CD33和CD123并激活T细胞的单克隆抗体制备了新的CD33和CD123 scFvs。筛选CD33和CD123 CAR - T细胞的细胞毒性、细胞因子产生和增殖,我们选择scFvs作为CD33/CD123双特异性CAR - T细胞。双特异性CARs在一个scFv上分裂4-1BB共刺激,在另一个scFv上分裂CD3ζ。在细胞因子分泌和细胞毒性的体外测试中,选择了双特异性的CAR - 1构建体进行体内分析。在异种移植AML小鼠模型中,CD33/CD123双特异性CAR - T细胞能够控制急性髓系白血病(AML),与单特异性CD33和CD123 CAR - T细胞类似,同时没有显示出靶外肿瘤效应。基于我们的研究结果,人类CD33/CD123双特异性CAR - T细胞是一种很有前途的基于细胞的方法来预防AML和支持临床研究。
{"title":"Bispecific CD33/CD123 targeted chimeric antigen receptor T cells for the treatment of acute myeloid leukemia","authors":"Justin C. Boucher, Bishwas Shrestha, Paresh Vishwasrao, Mark Leick, Estelle V. Cervantes, Tayyebb Ghafoor, Kayla Reid, Kristen Spitler, Bin Yu, Brian C. Betts, Jose A. Guevara-Patino, Marcela V. Maus, Marco L. Davila","doi":"10.1016/j.omto.2023.100751","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100751","url":null,"abstract":"<p>CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an “AND” logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. <em>In vitro</em> testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for <em>in vivo</em> analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"44 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.omto.2023.100739
Timothy P. Cripe
In 2014, the American Society of Cell and Gene Therapy (ASGCT) launched a sibling journal to Molecular Therapy (MT), Molecular Therapy - Oncolytics (MTO), to accommodate the blossoming field of cancer biologics and publish studies that involved “engineering cells, viruses, or other microorganisms to combat cancer.”1Fong Y. MTO: a new journal for a maturing field.Mol. Ther. Oncolytics. 2014; 114001https://doi.org/10.1038/mto.2014.1Abstract Full Text Full Text PDF Scopus (0) Google Scholar Similar to the other MT sibling journals, MTO was intended to be an outlet for cancer therapy papers that deserved to be published but were more specialized and needed a more targeted audience. Their timing was right on, as it was concurrent with the first FDA approval of an anti-PD-1 antibody, and the following year, we saw the first FDA approval of an oncolytic virus as a cancer therapy.2First Oncolytic Viral Therapy for Melanoma.Cancer Discov. 2016; 6: 6https://doi.org/10.1158/2159-8290.CD-NB2015-158Crossref PubMed Scopus (34) Google Scholar Another 2 years thereafter, the FDA approved an engineered cell therapy for leukemia.3Bach P.B. Giralt S.A. Saltz L.B. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug.JAMA. 2017; 318: 1861-1862https://doi.org/10.1001/jama.2017.15218Crossref PubMed Scopus (123) Google Scholar Since then, checkpoint inhibitors have flourished, and cell therapies have exploded,4Mitra A. Barua A. Huang L. Ganguly S. Feng Q. He B. From bench to bedside: the history and progress of CAR T cell therapy.Front. Immunol. 2023; 141188049https://doi.org/10.3389/fimmu.2023.1188049Crossref Scopus (3) Google Scholar with six FDA-approved products so far and global markets estimated to reach $50 billion by 2030. Sadly, there has not yet been another oncolytic virus on the US market, though a few have received conditional approvals in other countries.5Zamecnik A. Immunotherapy insights: Oncolytic viruses struggle to find a spot in a crowded field.Pharm. Technol. 2023; https://www.pharmaceutical-technology.com/features/immunotherapy-insights-oncolytic-viruses-struggle-to-find-a-spot-in-a-crowded-field/Google Scholar Encouragingly, there have been promising clinical data reported in small studies in certain settings,6Desjardins A. Gromeier M. Herndon J.E. Beaubier N. Bolognesi D.P. Friedman A.H. Friedman H.S. McSherry F. Muscat A.M. Nair S. et al.Recurrent Glioblastoma Treated with Recombinant Poliovirus.N. Engl. J. Med. 2018; 379: 150-161https://doi.org/10.1056/NEJMoa1716435Crossref PubMed Scopus (486) Google Scholar,7Friedman G.K. Johnston J.M. Bag A.K. Bernstock J.D. Li R. Aban I. Kachurak K. Nan L. Kang K.-D. Totsch S. et al.Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas.N. Engl. J. Med. 2021; 384: 1613-1622https://doi.org/10.1056/NEJMoa2024947Crossref PubMed Scopus (144) Google Scholar,8Gállego Pérez-Larraya J. Garcia-Moure M. Labiano S. Patiño-García A. Dobbs J. Gonzalez-Huarriz M. Zalacain M
2014年,美国细胞与基因治疗学会(ASGCT)推出了《分子治疗》(MT)的兄弟期刊《分子治疗-肿瘤学》(MTO),以适应蓬勃发展的癌症生物制剂领域,并发表涉及“工程细胞、病毒或其他微生物对抗癌症”的研究。[1]方勇。MTO:一个成熟领域的新期刊。其他。溶瘤。2014;114001https://doi.org/10.1038/mto.2014.1Abstract全文PDF Scopus (0) Google Scholar与其他MT兄弟期刊类似,MTO旨在成为癌症治疗论文的一个出口,这些论文值得发表,但更专业,需要更有针对性的受众。他们的时机很好,因为与此同时FDA批准了首个抗pd -1抗体,第二年,我们看到FDA批准了首个溶瘤病毒作为癌症治疗药物。第一个用于黑色素瘤的溶瘤病毒疗法。癌症发现杂志2016;6: 6https://doi.org/10.1158/2159-8290.CD-NB2015-158Crossref PubMed Scopus (34) Google Scholar又过了2年,FDA批准了一种用于白血病的工程细胞疗法。3Bach P.B. Giralt S.A. Saltz L.B. FDA批准Tisagenlecleucel:一种价值47.5万美元的抗癌药物的前景和复杂性。2017;[4]黄丽丽,冯强,何波,等。CAR - T细胞治疗的历史与进展:从实验到临床。前沿。Immunol。2023;141188049https://doi.org/10.3389/fimmu.2023.1188049Crossref Scopus (3) Google Scholar目前有6个fda批准的产品,预计到2030年全球市场将达到500亿美元。遗憾的是,美国市场上还没有出现另一种溶瘤病毒,尽管有一些病毒在其他国家获得了有条件的批准。5Zamecnik a .免疫疗法的见解:溶瘤病毒难以在拥挤的领域中找到一席之地。抛光工艺。2023;https://www.pharmaceutical-technology.com/features/immunotherapy-insights-oncolytic-viruses-struggle-to-find-a-spot-in-a-crowded-field/Google学者令人鼓舞的是,在某些环境下的小型研究中,有一些有希望的临床数据报告,6Desjardins A. Gromeier M. Herndon J.E. Beaubier N. Bolognesi D.P. Friedman A. h . Friedman H.S. McSherry F. Muscat A.M.重组脊髓灰质炎病毒治疗复发性胶质母细胞瘤。心血管病。医学杂志,2018;379: 150-161https://doi.org/10.1056/NEJMoa1716435Crossref PubMed Scopus (486) Google Scholar,7Friedman G.K. Johnston J.M. Bag A.K. Bernstock J.D. Li R. Aban I. Kachurak K. Nan L. Kang k.d。免疫病毒治疗小儿高级别胶质瘤的临床研究[j]。心血管病。医学杂志。2021;[14]李建军,李建军,李建军,等。脑桥神经胶质瘤的诊断与诊断[j] .中国医学信息学报,2013,31 (4):1313 - 1322 https://doi.org/10.1056/NEJMoa2024947Crossref PubMed Scopus (144) Google Scholar,8Gállego心血管病。医学杂志。2022;386: 2471-2481https://doi.org/10.1056/NEJMoa2202028Crossref PubMed Scopus (67) Google Scholar给了我们溶瘤病毒未来的希望。目前还没有细菌疗法被批准,但有许多正在进行的试验。顾名思义,MTO在技术上涵盖了任何消灭癌症的疗法(onco,来自希腊语onkos,意思是肿块或肿块;裂解,源自希腊语lusis,意思是分解)。也就是说,就日常使用而言,“溶瘤剂”一词几乎完全与溶瘤病毒有关,并不真正用于指代任何其他类型的治疗。作为今年新上任的总编辑,我明白了这一点,因为一位细胞治疗作者向MT提交了一篇论文,他拒绝将其转到MTO,“因为我们的研究不是关于溶瘤病毒的”。鉴于自成立以来的十年里,在广泛的癌症治疗技术领域取得了令人兴奋的发展,我们有必要回到ASGCT领导层和MTO首任总编辑方玉曼最初的、更广阔的愿景。为了更好地服务于这个领域,方博士强调,我们需要发表“基础研究和转化研究”,包括相关的负面数据(例如,“无剂量限制性毒性”),旨在“快速发表新知识,促进人类癌症的治疗和治愈”。[1]方勇。MTO:一个成熟领域的新期刊。其他。溶瘤。2014;虽然只是几个字母的切换,但我们相信将期刊名称更改为《分子治疗肿瘤学》将对期刊的成功、ASGCT和研究者产生重大影响,因为我们明确欢迎来自所有与癌症治疗相关学科的投稿。
{"title":"Molecular Therapy Oncology: What’s in a name?","authors":"Timothy P. Cripe","doi":"10.1016/j.omto.2023.100739","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100739","url":null,"abstract":"In 2014, the American Society of Cell and Gene Therapy (ASGCT) launched a sibling journal to Molecular Therapy (MT), Molecular Therapy - Oncolytics (MTO), to accommodate the blossoming field of cancer biologics and publish studies that involved “engineering cells, viruses, or other microorganisms to combat cancer.”1Fong Y. MTO: a new journal for a maturing field.Mol. Ther. Oncolytics. 2014; 114001https://doi.org/10.1038/mto.2014.1Abstract Full Text Full Text PDF Scopus (0) Google Scholar Similar to the other MT sibling journals, MTO was intended to be an outlet for cancer therapy papers that deserved to be published but were more specialized and needed a more targeted audience. Their timing was right on, as it was concurrent with the first FDA approval of an anti-PD-1 antibody, and the following year, we saw the first FDA approval of an oncolytic virus as a cancer therapy.2First Oncolytic Viral Therapy for Melanoma.Cancer Discov. 2016; 6: 6https://doi.org/10.1158/2159-8290.CD-NB2015-158Crossref PubMed Scopus (34) Google Scholar Another 2 years thereafter, the FDA approved an engineered cell therapy for leukemia.3Bach P.B. Giralt S.A. Saltz L.B. FDA Approval of Tisagenlecleucel: Promise and Complexities of a $475 000 Cancer Drug.JAMA. 2017; 318: 1861-1862https://doi.org/10.1001/jama.2017.15218Crossref PubMed Scopus (123) Google Scholar Since then, checkpoint inhibitors have flourished, and cell therapies have exploded,4Mitra A. Barua A. Huang L. Ganguly S. Feng Q. He B. From bench to bedside: the history and progress of CAR T cell therapy.Front. Immunol. 2023; 141188049https://doi.org/10.3389/fimmu.2023.1188049Crossref Scopus (3) Google Scholar with six FDA-approved products so far and global markets estimated to reach $50 billion by 2030. Sadly, there has not yet been another oncolytic virus on the US market, though a few have received conditional approvals in other countries.5Zamecnik A. Immunotherapy insights: Oncolytic viruses struggle to find a spot in a crowded field.Pharm. Technol. 2023; https://www.pharmaceutical-technology.com/features/immunotherapy-insights-oncolytic-viruses-struggle-to-find-a-spot-in-a-crowded-field/Google Scholar Encouragingly, there have been promising clinical data reported in small studies in certain settings,6Desjardins A. Gromeier M. Herndon J.E. Beaubier N. Bolognesi D.P. Friedman A.H. Friedman H.S. McSherry F. Muscat A.M. Nair S. et al.Recurrent Glioblastoma Treated with Recombinant Poliovirus.N. Engl. J. Med. 2018; 379: 150-161https://doi.org/10.1056/NEJMoa1716435Crossref PubMed Scopus (486) Google Scholar,7Friedman G.K. Johnston J.M. Bag A.K. Bernstock J.D. Li R. Aban I. Kachurak K. Nan L. Kang K.-D. Totsch S. et al.Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas.N. Engl. J. Med. 2021; 384: 1613-1622https://doi.org/10.1056/NEJMoa2024947Crossref PubMed Scopus (144) Google Scholar,8Gállego Pérez-Larraya J. Garcia-Moure M. Labiano S. Patiño-García A. Dobbs J. Gonzalez-Huarriz M. Zalacain M","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"1 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.omto.2023.100749
Charlotte O’Brien Gore, Amy Billman, Suchete Hunjan, Jayne Colebrook, Desmond Choy, Wilson Li, Jack Haynes, Jennifer Wade, Emily Hobern, Louisa McDonald, Sophie Papa, Martijn Brugman, Shahram Kordasti, Claudia Montiel-Equihua
{"title":"Pre-treatment with systemic agents for advanced NSCLC elicits changes in the phenotype of autologous T cell therapy products.","authors":"Charlotte O’Brien Gore, Amy Billman, Suchete Hunjan, Jayne Colebrook, Desmond Choy, Wilson Li, Jack Haynes, Jennifer Wade, Emily Hobern, Louisa McDonald, Sophie Papa, Martijn Brugman, Shahram Kordasti, Claudia Montiel-Equihua","doi":"10.1016/j.omto.2023.100749","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100749","url":null,"abstract":"","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"2014 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1016/j.omto.2023.100748
Jessica A. Minott, Jacob P. van Vloten, Jake G.E. Yates, Lisa A. Santry, Kathy Matuszewska, Madison Pereira, Melanie M. Goens, Alicia Viloria-Petit, Geoffrey A. Wood, Khalil Karimi, James J. Petrik, Byram W. Bridle, Sarah K. Wootton
{"title":"Kinetic analysis of oncolytic OrfV-induced innate and adaptive immune responses in a murine model of late-stage ovarian cancer","authors":"Jessica A. Minott, Jacob P. van Vloten, Jake G.E. Yates, Lisa A. Santry, Kathy Matuszewska, Madison Pereira, Melanie M. Goens, Alicia Viloria-Petit, Geoffrey A. Wood, Khalil Karimi, James J. Petrik, Byram W. Bridle, Sarah K. Wootton","doi":"10.1016/j.omto.2023.100748","DOIUrl":"https://doi.org/10.1016/j.omto.2023.100748","url":null,"abstract":"","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":"6 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}