Microbial Transport by a Descending Ice Melting Probe: Implications for Subglacial and Ocean World Exploration.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2023-11-01 Epub Date: 2023-06-06 DOI:10.1089/ast.2021.0106
Caleb G Schuler, Dale P Winebrenner, W Timothy Elam, Justin Burnett, Bruce W Boles, Jill A Mikucki
{"title":"Microbial Transport by a Descending Ice Melting Probe: Implications for Subglacial and Ocean World Exploration.","authors":"Caleb G Schuler, Dale P Winebrenner, W Timothy Elam, Justin Burnett, Bruce W Boles, Jill A Mikucki","doi":"10.1089/ast.2021.0106","DOIUrl":null,"url":null,"abstract":"<p><p>Ocean Worlds beneath thick ice covers in our solar system, as well as subglacial lakes on Earth, may harbor biological systems. In both cases, thick ice covers (>100 s of meters) present significant barriers to access. Melt probes are emerging as tools for reaching and sampling these realms due to their small logistical footprint, ability to transport payloads, and ease of cleaning in the field. On Earth, glaciers are immured with various abundances of microorganisms and debris. The potential for bioloads to accumulate around and be dragged by a probe during descent has not previously been investigated. Due to the pristine nature of these environments, minimizing and understanding the risk of forward contamination and considering the potential of melt probes to act as instrument-induced special regions are essential. In this study, we examined the effect that two engineering descent strategies for melt probes have on the dragging of bioloads. We also tested the ability of a field cleaning protocol to rid a common contaminant, <i>Bacillus</i>. These tests were conducted in a synthetic ice block immured with bioloads using the Ice Diver melt probe. Our data suggest minimal dragging of bioloads by melt probes, but conclude that modifications for further minimization and use in special regions should be made.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2021.0106","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

Ocean Worlds beneath thick ice covers in our solar system, as well as subglacial lakes on Earth, may harbor biological systems. In both cases, thick ice covers (>100 s of meters) present significant barriers to access. Melt probes are emerging as tools for reaching and sampling these realms due to their small logistical footprint, ability to transport payloads, and ease of cleaning in the field. On Earth, glaciers are immured with various abundances of microorganisms and debris. The potential for bioloads to accumulate around and be dragged by a probe during descent has not previously been investigated. Due to the pristine nature of these environments, minimizing and understanding the risk of forward contamination and considering the potential of melt probes to act as instrument-induced special regions are essential. In this study, we examined the effect that two engineering descent strategies for melt probes have on the dragging of bioloads. We also tested the ability of a field cleaning protocol to rid a common contaminant, Bacillus. These tests were conducted in a synthetic ice block immured with bioloads using the Ice Diver melt probe. Our data suggest minimal dragging of bioloads by melt probes, but conclude that modifications for further minimization and use in special regions should be made.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下降冰融化探测器的微生物运输:对冰下和海洋世界探索的启示。
太阳系中厚冰层下的海洋世界,以及地球上的冰下湖泊,可能蕴藏着生物系统。在这两种情况下,厚厚的冰层(50 - 100米)构成了进入的重大障碍。由于其物流占地面积小,能够运输有效载荷,并且易于现场清洁,因此熔融探针正在成为到达和采样这些领域的工具。在地球上,冰川被各种丰度的微生物和碎片所覆盖。生物载荷在下降过程中积聚并被探测器拖拽的可能性此前没有被调查过。由于这些环境的原始性质,尽量减少和了解向前污染的风险,并考虑熔体探针作为仪器诱发的特殊区域的潜力是必不可少的。在本研究中,我们研究了熔体探针的两种工程下降策略对生物负载拖拽的影响。我们还测试了现场清洁方案去除常见污染物芽孢杆菌的能力。这些测试是在一个合成的冰块中进行的,用冰潜水员融化探针免疫了生物载荷。我们的数据表明,熔体探针对生物负载的拖拽最小,但结论是,为了进一步最小化和在特殊地区使用,应该进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
Evaluating Pigments as a Biosignature: Abiotic/Prebiotic Synthesis of Pigments and Pigment Mimics in Planetary Environments. Ultraviolet Resistance of Microorganisms Isolated from Uranium-Rich Minerals from Perus, Brazil. A Bayesian Analysis of the Probability of the Origin of Life Per Site Conducive to Abiogenesis. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. Exoplanet Innovators Interview: Sara Seager Interviews Dave Charbonneau.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1