Prebiotic synthesis of complex organic molecules in water-rich environments has been a long-standing challenge. In the modern deep sea, emission of liquid CO2 has been observed in multiple locations, which indicates the existence of benthic CO2 pools. Recently, a liquid/supercritical CO2 (ScCO2) hypothesis has been proposed that a two-phase ScCO2-water environment could lead to efficient dehydration and condensation of organics. To confirm this hypothesis, we conducted a nucleoside phosphorylation reaction in a hydrothermal reactor creating ScCO2-water two-phase environment. After 120 h of uridine, cytosine, guanosine, and adenosine phosphorylation at 68.9°C, various nucleoside monophosphates (NMPs), nucleotide diphosphates, and carbamoyl nucleosides were produced. The addition of urea enhanced the overall production of phosphorylated species with 5'-NMPs, the major products that reached over 10% yield. As predicted, phosphorylation did not proceed in the fully aqueous environment without ScCO2. Further, a glass window reactor was introduced for direct observation of the two-phase environment, where the escape of water into the ScCO2 phase was observed. These results are similar to those of a wet-dry cycle experiment simulating the terrestrial hot spring environment, indicating that the presence of ScCO2 can create a comparatively dry condition in the deep sea. In addition, the high acidity present in the aqueous phase further supports nucleotide synthesis by enabling the release of orthophosphate from the hydroxyapatite mineral solving the phosphate problem. Thus, the present study highlights the potential of the unique ScCO2-water two-phase environment to drive prebiotic nucleotide synthesis and likely induce condensation reactions of various organic and inorganic compounds in the deep-sea CO2 pool on Earth and potentially other ocean worlds.
{"title":"Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment.","authors":"Shotaro Tagawa, Ryota Hatami, Kohei Morino, Shohei Terazawa, Caner Akıl, Kristin Johnson-Finn, Takazo Shibuya, Kosuke Fujishima","doi":"10.1089/ast.2024.0016","DOIUrl":"10.1089/ast.2024.0016","url":null,"abstract":"<p><p>Prebiotic synthesis of complex organic molecules in water-rich environments has been a long-standing challenge. In the modern deep sea, emission of liquid CO<sub>2</sub> has been observed in multiple locations, which indicates the existence of benthic CO<sub>2</sub> pools. Recently, a liquid/supercritical CO<sub>2</sub> (ScCO<sub>2</sub>) hypothesis has been proposed that a two-phase ScCO<sub>2</sub>-water environment could lead to efficient dehydration and condensation of organics. To confirm this hypothesis, we conducted a nucleoside phosphorylation reaction in a hydrothermal reactor creating ScCO<sub>2</sub>-water two-phase environment. After 120 h of uridine, cytosine, guanosine, and adenosine phosphorylation at 68.9°C, various nucleoside monophosphates (NMPs), nucleotide diphosphates, and carbamoyl nucleosides were produced. The addition of urea enhanced the overall production of phosphorylated species with 5'-NMPs, the major products that reached over 10% yield. As predicted, phosphorylation did not proceed in the fully aqueous environment without ScCO<sub>2</sub>. Further, a glass window reactor was introduced for direct observation of the two-phase environment, where the escape of water into the ScCO<sub>2</sub> phase was observed. These results are similar to those of a wet-dry cycle experiment simulating the terrestrial hot spring environment, indicating that the presence of ScCO<sub>2</sub> can create a comparatively dry condition in the deep sea. In addition, the high acidity present in the aqueous phase further supports nucleotide synthesis by enabling the release of orthophosphate from the hydroxyapatite mineral solving the phosphate problem. Thus, the present study highlights the potential of the unique ScCO<sub>2</sub>-water two-phase environment to drive prebiotic nucleotide synthesis and likely induce condensation reactions of various organic and inorganic compounds in the deep-sea CO<sub>2</sub> pool on Earth and potentially other ocean worlds.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-25DOI: 10.1089/ast.2024.0001
Anthony J Ranalli, Gregg A Swayze
Cross Crater is a 65-km impact crater located in the Noachian highlands of the Terra Sirenum region of Mars. Geochemical modeling has indicated that alunite detected on the southwest wall of Cross Crater could have been formed by a fumarole upwelling into Cross Crater Lake and could indicate that an environment favorable to the development of life may have existed several billion years ago. Alunite did not form when Noachian precipitation reacted with basalt nor when the sediments and groundwater resulting from this reaction were reacted with a fumarole. Only when Cross Crater Lake water was equilibrated with sulfuric acid, thought to be a major component of the atmosphere in the Hesperian, following reaction with fumarole groundwater, did alunite precipitate from solution. Kaolinite, silica, or an Al-smectite such as montmorillonite also formed. The proximity of Cross Crater to the Tharsis volcanic region relative to Columbus crater, where alunite has also been detected, may have resulted in larger amounts of magmatic water input to the lake from sources along fractures that extend westward from Tharsis. This could explain the more extensive deposit of alunite at Cross Crater relative to Columbus crater.
十字陨石坑是一个 65 千米长的撞击坑,位于火星 Terra Sirenum 地区的 Noachian 高地。地球化学建模表明,在十字陨石坑西南壁上探测到的矾土可能是由上涌到十字陨石坑湖中的燧石形成的,这可能表明几十亿年前可能存在着有利于生命发展的环境。当诺阿契亚沉淀物与玄武岩发生反应时,以及当这种反应所产生的沉积物和地下水与一个火成孔发生反应时,都不会形成明矾石。只有当十字坑湖水与硫酸(被认为是黑斯佩尔纪大气的主要成分)平衡后,在与富马耳地下水反应后,才会从溶液中析出铝土矿。此外,还形成了高岭石、硅石或铝闪长岩(如蒙脱石)。与哥伦布环形山相比,克罗斯环形山更靠近塔西斯火山区,而哥伦布环形山也检测到了铝云母,这可能导致从塔西斯火山区向西延伸的裂缝向湖泊输入了更多的岩浆水。这可以解释为什么相对于哥伦布陨石坑,十字陨石坑有更多的铝土矿沉积。
{"title":"Alunite in Cross Crater, Mars: Evidence for a Possible Site of Ancient Life.","authors":"Anthony J Ranalli, Gregg A Swayze","doi":"10.1089/ast.2024.0001","DOIUrl":"10.1089/ast.2024.0001","url":null,"abstract":"<p><p>Cross Crater is a 65-km impact crater located in the Noachian highlands of the Terra Sirenum region of Mars. Geochemical modeling has indicated that alunite detected on the southwest wall of Cross Crater could have been formed by a fumarole upwelling into Cross Crater Lake and could indicate that an environment favorable to the development of life may have existed several billion years ago. Alunite did not form when Noachian precipitation reacted with basalt nor when the sediments and groundwater resulting from this reaction were reacted with a fumarole. Only when Cross Crater Lake water was equilibrated with sulfuric acid, thought to be a major component of the atmosphere in the Hesperian, following reaction with fumarole groundwater, did alunite precipitate from solution. Kaolinite, silica, or an Al-smectite such as montmorillonite also formed. The proximity of Cross Crater to the Tharsis volcanic region relative to Columbus crater, where alunite has also been detected, may have resulted in larger amounts of magmatic water input to the lake from sources along fractures that extend westward from Tharsis. This could explain the more extensive deposit of alunite at Cross Crater relative to Columbus crater.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1096-1109"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Earth is expected to have acquired a reduced proto-atmosphere enriched in H2 and CH4 through the accretion of building blocks that contain metallic Fe and/or the gravitational trapping of surrounding nebula gas. Such an early, wet, reduced atmosphere that covers a proto-ocean would then ultimately evolve toward oxidized chemical compositions through photochemical processes that involve reactions with H2O-derived oxidant radicals and the selective escape of hydrogen to space. During this time, atmospheric CH4 could be photochemically reprocessed to generate not only C-bearing oxides but also organics. However, the branching ratio between organic matter formation and oxidation remains unknown despite its significance on the abiotic chemical evolution of early Earth. Here, we show via numerical analyses that UV absorptions by gaseous hydrocarbons such as C2H2 and C3H4 significantly suppress H2O photolysis and subsequent CH4 oxidation during the photochemical evolution of a wet proto-atmosphere enriched in H2 and CH4. As a result, nearly half of the initial CH4 converted to heavier organics along with the deposition of prebiotically essential molecules such as HCN and H2CO on the surface of a primordial ocean for a geological timescale order of 10-100 Myr. Our results suggest that the accumulation of organics and prebiotically important molecules in the proto-ocean could produce a soup enriched in various organics, which might have eventually led to the emergence of living organisms.
{"title":"Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere.","authors":"Tatsuya Yoshida, Shungo Koyama, Yuki Nakamura, Naoki Terada, Kiyoshi Kuramoto","doi":"10.1089/ast.2024.0048","DOIUrl":"10.1089/ast.2024.0048","url":null,"abstract":"<p><p>Earth is expected to have acquired a reduced proto-atmosphere enriched in H<sub>2</sub> and CH<sub>4</sub> through the accretion of building blocks that contain metallic Fe and/or the gravitational trapping of surrounding nebula gas. Such an early, wet, reduced atmosphere that covers a proto-ocean would then ultimately evolve toward oxidized chemical compositions through photochemical processes that involve reactions with H<sub>2</sub>O-derived oxidant radicals and the selective escape of hydrogen to space. During this time, atmospheric CH<sub>4</sub> could be photochemically reprocessed to generate not only C-bearing oxides but also organics. However, the branching ratio between organic matter formation and oxidation remains unknown despite its significance on the abiotic chemical evolution of early Earth. Here, we show via numerical analyses that UV absorptions by gaseous hydrocarbons such as C<sub>2</sub>H<sub>2</sub> and C<sub>3</sub>H<sub>4</sub> significantly suppress H<sub>2</sub>O photolysis and subsequent CH<sub>4</sub> oxidation during the photochemical evolution of a wet proto-atmosphere enriched in H<sub>2</sub> and CH<sub>4</sub>. As a result, nearly half of the initial CH<sub>4</sub> converted to heavier organics along with the deposition of prebiotically essential molecules such as HCN and H<sub>2</sub>CO on the surface of a primordial ocean for a geological timescale order of 10-100 Myr. Our results suggest that the accumulation of organics and prebiotically important molecules in the proto-ocean could produce a soup enriched in various organics, which might have eventually led to the emergence of living organisms.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1074-1084"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-10DOI: 10.1089/ast.2024.0026
Augusto Carballido
In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (mm) produced shorter travel times (between 22 days for a probe temperature and ∼4 years for ) than a larger cell size (m), which produced travel times between 27 years ( 600K) and ∼103 years ( 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.
{"title":"Travel Times of a Descending Melting Probe on Europa.","authors":"Augusto Carballido","doi":"10.1089/ast.2024.0026","DOIUrl":"https://doi.org/10.1089/ast.2024.0026","url":null,"abstract":"<p><p>In this study, we calculated the travel times of a thermal probe that descends through Europa's ice shell. The ice column is simplified to a conductive layer. Using a cellular automaton model, the descent of the probe was simulated by tracking temperature changes, with cell interaction dictated by heat conduction and cell state transition rules determined by cell temperatures. Validation tests, including a soil column simulation, and comparison with experimental data, support the reliability of the model. Simulations were performed with 2 different cell sizes, 19 constant probe temperatures, and 5 ice thermal conductivities. A smaller cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>3</mn><mo> </mo></mrow></math>mm) produced shorter travel times (between 22 days for a probe temperature <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>600</mn><mi>K</mi></mrow></math> and ∼4 years for <math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo><mn>280</mn><mi>K</mi></mrow></math>) than a larger cell size (<math><mrow><mtext>Δ</mtext><mi>z</mi><mo>=</mo><mn>1</mn><mo> </mo></mrow></math>m), which produced travel times between 27 years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 600K) and ∼10<sup>3</sup> years (<math><mrow><mrow><msub><mi>T</mi><mtext>p</mtext></msub></mrow><mo>=</mo></mrow></math> 280K). The ice shell's thermal conductivity has a modest impact on descent times. The results are generally consistent with previous approaches that used more detailed probe engineering considerations. These results suggest that a probe relying solely on heat production may traverse Europa's conductive ice shell within a mission's timeframe.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 11","pages":"1143-1149"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-22DOI: 10.1089/ast.2024.0006
Anaïs Roussel, Alexander A Pavlov, Jason P Dworkin, Sarah S Johnson
Understanding how organics degrade under galactic cosmic rays (GCRs) is critical as we search for traces of ancient life on Mars. Even if the planet harbored life early in its history, its surface rocks have been exposed to ionizing radiation for about four billion years, potentially destroying the vast majority of biosignatures. In this study, we investigated for the first time the impact of simulated GCRs (using gamma rays) on several types of lipid biosignatures (including hopane C30, sterane C27, alkanes, and fatty acids [FAs]) in both the presence and absence of salts (NaCl, KCl, and MgCl2). We measured that the lipids degraded 6-20 times faster than amino acids in similar conditions; moreover, when irradiated in the presence of a salt substrate, degradation was at least 4-6 times faster than without salt, which suggests that salty environments that are often preferred targets for astrobiology warrant caution. We detected radiolytic by-products only for FAs-in the form of alkanes and aldehydes. These results expand our understanding of the degradation of organic molecules in Mars analog environments and underscore the urgent need to direct rover missions to sampling sites protected from GCRs, for example, sites on Mars that have been recently exposed by a wind scarp retreat or meteoritic impact.
{"title":"Rapid Destruction of Lipid Biomarkers Under Simulated Cosmic Radiation.","authors":"Anaïs Roussel, Alexander A Pavlov, Jason P Dworkin, Sarah S Johnson","doi":"10.1089/ast.2024.0006","DOIUrl":"10.1089/ast.2024.0006","url":null,"abstract":"<p><p>Understanding how organics degrade under galactic cosmic rays (GCRs) is critical as we search for traces of ancient life on Mars. Even if the planet harbored life early in its history, its surface rocks have been exposed to ionizing radiation for about four billion years, potentially destroying the vast majority of biosignatures. In this study, we investigated for the first time the impact of simulated GCRs (using gamma rays) on several types of lipid biosignatures (including hopane C<sub>30</sub>, sterane C<sub>27</sub>, alkanes, and fatty acids [FAs]) in both the presence and absence of salts (NaCl, KCl, and MgCl<sub>2</sub>). We measured that the lipids degraded 6-20 times faster than amino acids in similar conditions; moreover, when irradiated in the presence of a salt substrate, degradation was at least 4-6 times faster than without salt, which suggests that salty environments that are often preferred targets for astrobiology warrant caution. We detected radiolytic by-products only for FAs-in the form of alkanes and aldehydes. These results expand our understanding of the degradation of organic molecules in Mars analog environments and underscore the urgent need to direct rover missions to sampling sites protected from GCRs, for example, sites on Mars that have been recently exposed by a wind scarp retreat or meteoritic impact.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1063-1073"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-25DOI: 10.1089/ast.2023.0125
Lori K Fenton, John R Marshall, Andrew C Schuerger, J Ken Smith, Karen L Kelley
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of Bacillus subtilis HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (∼2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.
{"title":"Aeolian Biodispersal of Terrestrial Microorganisms on Mars Through Saltation Bombardment of Spacecraft.","authors":"Lori K Fenton, John R Marshall, Andrew C Schuerger, J Ken Smith, Karen L Kelley","doi":"10.1089/ast.2023.0125","DOIUrl":"10.1089/ast.2023.0125","url":null,"abstract":"<p><p>A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of <i>Bacillus subtilis</i> HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (∼2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1128-1142"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-25DOI: 10.1089/ast.2024.0019
Maria C Figueroa, Daniel D Gregory, Kenneth H Williford, David J Fike, Timothy W Lyons
We propose a novel approach to identify the origin of pyrite grains and distinguish biologically influenced sedimentary pyrite using combined in situ sulfur isotope (δ34S) and trace element (TE) analyses. To classify and predict the origin of individual pyrite grains, we applied multiple machine-learning algorithms to coupled δ34S and TE data from pyrite grains formed from diverse sedimentary, hydrothermal, and metasomatic processes across geologic time. Our unsupervised classification algorithm, K-means++ cluster analysis, yielded six classes based on the formation environment of the pyrite: sedimentary, low temperature hydrothermal, medium temperature, polymetallic hydrothermal, high temperature, and large euhedral. We tested three supervised models (random forest [RF], Naïve Bayes, k-nearest neighbors), and RF outperformed the others in predicting pyrite formation type, achieving a precision (area under the ROC curve) of 0.979 ± 0.005 and an overall average class accuracy of 0.878 ± 0.005. Moreover, we found that coupling TE and δ34S data significantly improved the performance of the RF model compared with using either TE or δ34S data alone. Our data provide a novel framework for exploring sedimentary rocks that have undergone multiple hydrothermal, magmatic, and metamorphic alterations. Most significant, however, is the demonstrated potential for distinguishing between biogenic and abiotic pyrite in samples from early Earth. This approach could also be applied to the search for potential biosignatures in samples returned from Mars.
我们提出了一种新方法,利用原位硫同位素(δ34S)和痕量元素(TE)组合分析来确定黄铁矿晶粒的来源并区分受生物影响的沉积黄铁矿。为了对单个黄铁矿晶粒进行分类和预测其来源,我们将多种机器学习算法应用于黄铁矿晶粒的δ34S和TE耦合数据,这些黄铁矿晶粒是在不同的沉积、热液和元气过程中形成的,跨越了地质年代。我们的无监督分类算法--K-means++聚类分析--根据黄铁矿的形成环境得出了六个类别:沉积、低温热液、中温、多金属热液、高温和大斜面。我们测试了三种监督模型(随机森林 [RF]、奈夫贝叶斯、k-近邻),RF 在预测黄铁矿形成类型方面优于其他模型,精确度(ROC 曲线下面积)达到 0.979 ± 0.005,总体平均分类精确度为 0.878 ± 0.005。此外,我们还发现,与单独使用 TE 或 δ34S 数据相比,耦合 TE 和 δ34S 数据可显著提高 RF 模型的性能。我们的数据为探索经历了热液、岩浆和变质等多重变化的沉积岩提供了一个新的框架。然而,最重要的是,我们证明了在早期地球样本中区分生物黄铁矿和非生物黄铁矿的潜力。这种方法也可用于在火星返回的样本中寻找潜在的生物特征。
{"title":"A Machine-Learning Approach to Biosignature Exploration on Early Earth and Mars Using Sulfur Isotope and Trace Element Data in Pyrite.","authors":"Maria C Figueroa, Daniel D Gregory, Kenneth H Williford, David J Fike, Timothy W Lyons","doi":"10.1089/ast.2024.0019","DOIUrl":"10.1089/ast.2024.0019","url":null,"abstract":"<p><p>We propose a novel approach to identify the origin of pyrite grains and distinguish biologically influenced sedimentary pyrite using combined <i>in situ</i> sulfur isotope (δ<sup>34</sup>S) and trace element (TE) analyses. To classify and predict the origin of individual pyrite grains, we applied multiple machine-learning algorithms to coupled δ<sup>34</sup>S and TE data from pyrite grains formed from diverse sedimentary, hydrothermal, and metasomatic processes across geologic time. Our unsupervised classification algorithm, K-means++ cluster analysis, yielded six classes based on the formation environment of the pyrite: sedimentary, low temperature hydrothermal, medium temperature, polymetallic hydrothermal, high temperature, and large euhedral. We tested three supervised models (random forest [RF], Naïve Bayes, k-nearest neighbors), and RF outperformed the others in predicting pyrite formation type, achieving a precision (area under the ROC curve) of 0.979 ± 0.005 and an overall average class accuracy of 0.878 ± 0.005. Moreover, we found that coupling TE and δ<sup>34</sup>S data significantly improved the performance of the RF model compared with using either TE or δ<sup>34</sup>S data alone. Our data provide a novel framework for exploring sedimentary rocks that have undergone multiple hydrothermal, magmatic, and metamorphic alterations. Most significant, however, is the demonstrated potential for distinguishing between biogenic and abiotic pyrite in samples from early Earth. This approach could also be applied to the search for potential biosignatures in samples returned from Mars.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1110-1127"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-22DOI: 10.1089/ast.2024.0038
Patrick D Tribbett, Yukiko Y Yarnall, Reggie L Hudson, Perry A Gerakines, Christopher K Materese
Thiophene and two derivatives (2-methylthiophene and 3-methylthiophene) have been detected on the surface of Mars with the Sample Analysis at Mars instrument suite onboard NASA's Curiosity rover. Thiophene could serve as a secondary chemical biosignature since the secondary biosynthesis of thiophene is considered an important production pathway. However, it is critical to understand the abiotic formation and destruction of thiophene and its derivatives since these pathways could affect the molecules' stabilities on planetary surfaces over geological timescales. Here, we present the radiolytic destruction kinetics of thiophene, 2-methylthiophene, and 3-methylthiophene as single-component ices and when diluted in water ice at low temperatures. Using infrared spectroscopy, we determined the destruction rate constants and extrapolated our radiolytic half-lives to the surface of Mars, assuming the measured and modeled surface dose rates. We found that our rate constants strongly depend on temperature and presence of water ice. Based on our determined radiolytic half-life for thiophene under conditions most similar to those of thiophene groups in Martian macromolecules, we expect thiophene to be stable on the surface for significantly longer than the Martian surface exposure age of sites in Gale crater where thiophenes have been detected.
{"title":"Radiation-Driven Destruction of Thiophene and Methyl-Substituted Thiophenes.","authors":"Patrick D Tribbett, Yukiko Y Yarnall, Reggie L Hudson, Perry A Gerakines, Christopher K Materese","doi":"10.1089/ast.2024.0038","DOIUrl":"10.1089/ast.2024.0038","url":null,"abstract":"<p><p>Thiophene and two derivatives (2-methylthiophene and 3-methylthiophene) have been detected on the surface of Mars with the Sample Analysis at Mars instrument suite onboard NASA's Curiosity rover. Thiophene could serve as a secondary chemical biosignature since the secondary biosynthesis of thiophene is considered an important production pathway. However, it is critical to understand the abiotic formation and destruction of thiophene and its derivatives since these pathways could affect the molecules' stabilities on planetary surfaces over geological timescales. Here, we present the radiolytic destruction kinetics of thiophene, 2-methylthiophene, and 3-methylthiophene as single-component ices and when diluted in water ice at low temperatures. Using infrared spectroscopy, we determined the destruction rate constants and extrapolated our radiolytic half-lives to the surface of Mars, assuming the measured and modeled surface dose rates. We found that our rate constants strongly depend on temperature and presence of water ice. Based on our determined radiolytic half-life for thiophene under conditions most similar to those of thiophene groups in Martian macromolecules, we expect thiophene to be stable on the surface for significantly longer than the Martian surface exposure age of sites in Gale crater where thiophenes have been detected.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1085-1095"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface to Eta-Earth Revisited: How Common Are Earth-like Habitats in the Galaxy?","authors":"Helmut Lammer, Manuel Scherf","doi":"10.1089/ast.2024.0116","DOIUrl":"10.1089/ast.2024.0116","url":null,"abstract":"","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 10","pages":"893-896"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><p>In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N<sub>2</sub>-O<sub>2</sub>-dominated atmospheres with minor amounts of CO<sub>2</sub> can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO<sub>2</sub> mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of <math><mrow><msubsup><mrow><mn>2.5</mn></mrow><mrow><mo>-</mo><mn>2.4</mn></mrow><mrow><mo>+</mo><mn>71.6</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math> and <math><mrow><msubsup><mrow><mn>0.6</mn></mrow><mrow><mo>-</mo><mn>0.59</mn></mrow><mrow><mo>+</mo><mn>27.1</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math>planets that can potentially host N<sub>2</sub>-O<sub>2</sub>-dominated atmospheres with maximum CO<sub>2</sub> mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of <math><mrow><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mn>3</mn></msup><mo>-</mo><msup><mrow><mn>10</mn></mrow><mn>6</mn></msup></mrow></math>rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (<i>e.g.</i>, the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be app
{"title":"Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk.","authors":"Manuel Scherf, Helmut Lammer, Laurenz Spross","doi":"10.1089/ast.2023.0076","DOIUrl":"10.1089/ast.2023.0076","url":null,"abstract":"<p><p>In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N<sub>2</sub>-O<sub>2</sub>-dominated atmospheres with minor amounts of CO<sub>2</sub> can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO<sub>2</sub> mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of <math><mrow><msubsup><mrow><mn>2.5</mn></mrow><mrow><mo>-</mo><mn>2.4</mn></mrow><mrow><mo>+</mo><mn>71.6</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math> and <math><mrow><msubsup><mrow><mn>0.6</mn></mrow><mrow><mo>-</mo><mn>0.59</mn></mrow><mrow><mo>+</mo><mn>27.1</mn></mrow></msubsup><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math>planets that can potentially host N<sub>2</sub>-O<sub>2</sub>-dominated atmospheres with maximum CO<sub>2</sub> mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of <math><mrow><mo>∼</mo><msup><mrow><mn>10</mn></mrow><mn>3</mn></msup><mo>-</mo><msup><mrow><mn>10</mn></mrow><mn>6</mn></msup></mrow></math>rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (<i>e.g.</i>, the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be app","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 10","pages":"e916-e1061"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}