Bloch-type magnetic skyrmions in two-dimensional lattices†

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2023-08-26 DOI:10.1039/D3MH00868A
Wenhui Du, Kaiying Dou, Zhonglin He, Ying Dai, Baibiao Huang and Yandong Ma
{"title":"Bloch-type magnetic skyrmions in two-dimensional lattices†","authors":"Wenhui Du, Kaiying Dou, Zhonglin He, Ying Dai, Baibiao Huang and Yandong Ma","doi":"10.1039/D3MH00868A","DOIUrl":null,"url":null,"abstract":"<p >Magnetic skyrmions in two-dimensional lattices are a prominent topic of condensed matter physics and materials science. Current research efforts in this field are exclusively constrained to Néel-type and antiskyrmions, while Bloch-type magnetic skyrmions are rarely explored. Here, we report the discovery of Bloch-type magnetic skyrmions in a two-dimensional lattice of MnInP<small><sub>2</sub></small>Te<small><sub>6</sub></small>, using first-principles calculations and Monte-Carlo simulations. Arising from the joint effect of broken inversion symmetry and strong spin–orbit coupling, monolayer MnInP<small><sub>2</sub></small>Te<small><sub>6</sub></small> presents large Dzyaloshinskii–Moriya interaction. This, along with ferromagnetic exchange interaction and out-of-plane magnetic anisotropy, gives rise to skyrmion physics in monolayer MnInP<small><sub>2</sub></small>Te<small><sub>6</sub></small>, in the absence of a magnetic field. Remarkably, different from all previous works on two-dimensional lattices, the resultant magnetic skyrmions feature Bloch-type magnetism, which is protected by <em>D</em><small><sub>3</sub></small> symmetry. Furthermore, Bloch-type magnetic bimerons are also identified in monolayer MnTlP<small><sub>2</sub></small>Te<small><sub>6</sub></small>. The phase diagrams of these Bloch-type topological magnetisms under a magnetic field, temperature and strain are mapped out. Our results greatly enrich the research on magnetic skyrmions in two-dimensional lattices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 11","pages":" 5071-5078"},"PeriodicalIF":12.2000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh00868a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions in two-dimensional lattices are a prominent topic of condensed matter physics and materials science. Current research efforts in this field are exclusively constrained to Néel-type and antiskyrmions, while Bloch-type magnetic skyrmions are rarely explored. Here, we report the discovery of Bloch-type magnetic skyrmions in a two-dimensional lattice of MnInP2Te6, using first-principles calculations and Monte-Carlo simulations. Arising from the joint effect of broken inversion symmetry and strong spin–orbit coupling, monolayer MnInP2Te6 presents large Dzyaloshinskii–Moriya interaction. This, along with ferromagnetic exchange interaction and out-of-plane magnetic anisotropy, gives rise to skyrmion physics in monolayer MnInP2Te6, in the absence of a magnetic field. Remarkably, different from all previous works on two-dimensional lattices, the resultant magnetic skyrmions feature Bloch-type magnetism, which is protected by D3 symmetry. Furthermore, Bloch-type magnetic bimerons are also identified in monolayer MnTlP2Te6. The phase diagrams of these Bloch-type topological magnetisms under a magnetic field, temperature and strain are mapped out. Our results greatly enrich the research on magnetic skyrmions in two-dimensional lattices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维晶格中的Bloch型磁性skyrmions。
二维晶格中的磁性skyrmions是凝聚态物理学和材料科学的一个重要课题。目前该领域的研究工作仅限于Néel型和抗skyrmions,而Bloch型磁性skyrmions很少被探索。在这里,我们使用第一性原理计算和蒙特卡罗模拟,在MnInP2Te6的二维晶格中发现了Bloch型磁性skyrmions。由于破坏的反转对称性和强自旋轨道耦合的共同作用,单层MnInP2Te6呈现出大的Dzyaloshinskii-Moriya相互作用。这与铁磁交换相互作用和平面外磁各向异性一起,在没有磁场的情况下,在单层MnInP2Te6中产生了skyrmion物理。值得注意的是,与以往所有关于二维晶格的工作不同,所产生的磁性skyrmions具有Bloch型磁性,受到D3对称性的保护。此外,在单层MnTlP2Te6中还鉴定出Bloch型磁性双原子子。绘制了这些Bloch型拓扑磁在磁场、温度和应变作用下的相图。我们的研究结果极大地丰富了二维晶格中磁性skyrmions的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Outstanding high-temperature capacitive performance in all-organic dielectrics enabled by synergistic optimization of molecular traps and aggregation structures. Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films via MHz-order nanoelectromechanical vibration. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. Hydrogen sulfide-generating semiconducting polymer nanoparticles for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1