Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium-sulfur (Li-S) batteries due to its superior stability and safety compared to Li-metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li-S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid-electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g-1 after 400 cycles at C/10 rate, in contrast to only 143 mA h g-1 for the Li-metal anode cell. Moreover, a Gr || Li2S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li2S loading of 3 mg cm-2 shows a stable 58% capacity retention after 400 cycles.
石墨(Gr)是当前锂离子技术的主要负极材料。与锂金属相比,石墨负极具有更高的稳定性和安全性,可为锂硫(Li-S)电池的开发提供切实可行的途径。然而,Gr 阳极与锂-S 系统中通常使用的传统稀醚基电解质不兼容。本文介绍了一种优化的醚电解质,即在 1,3-二氧戊环(DOL)/1,1,2,2-四氟乙基 2,2,3,3-四氟丙基醚(TTE)中使用 1 M 双(三氟甲烷磺酰基)亚胺锂(LiTFSI)。在不改变盐浓度的情况下,这种电解质可以调节溶解结构,促进形成坚固的固体-电解质相间层(SEI),从而显著提高 Gr 阳极的循环能力。同时,DOL/TTE 电解质还能为硫阴极保持足够的动力学性能,使其能够与 Gr 阳极配对,而无需对阴极进行任何改动。使用 Gr 阳极的电池在 C/10 速率下循环 400 次后,可实现 515 mA h g-1 的可逆放电容量,而使用锂金属阳极的电池仅为 143 mA h g-1。此外,负极与正极容量(N/P)比为 1.05、Li2S 负载为 3 mg cm-2 的 Gr || Li2S 全电池在 400 次循环后显示出稳定的 58% 容量保持率。
{"title":"Long-life graphite-lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design.","authors":"Tianxing Lai, Amruth Bhargav, Seth Reed, Arumugam Manthiram","doi":"10.1039/d4mh01287a","DOIUrl":"https://doi.org/10.1039/d4mh01287a","url":null,"abstract":"<p><p>Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium-sulfur (Li-S) batteries due to its superior stability and safety compared to Li-metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li-S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid-electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g<sup>-1</sup> after 400 cycles at C/10 rate, in contrast to only 143 mA h g<sup>-1</sup> for the Li-metal anode cell. Moreover, a Gr || Li<sub>2</sub>S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li<sub>2</sub>S loading of 3 mg cm<sup>-2</sup> shows a stable 58% capacity retention after 400 cycles.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Wang, Jian Li, Ke Liu, Lei Lei, Xun Chen, Degao Wang
The stabilization of metal-oxide-bound molecular catalysts is essential for enhancing their lifetime and commercial viability in heterogeneous catalysis. This is particularly relevant in dye-sensitized photoelectrochemical cells (DSPECs), where the surface-bound chromophores and catalysts exhibit instability in aqueous environments, particularly at elevated pH levels. In this work, we have successfully employed molecular layer deposition (MLD) to stabilize ruthenium-based catalysts (RuCP(OH2)2+, denoted as RuCat). The application of polyimide (PI) via MLD onto the porous nanoITO surface significantly improved the stabilization of RuCat molecules for water oxidation. Additionally, time-resolved photoluminescence (TRPL) spectroscopy and femtosecond transient absorption spectroscopy (fs-TAS) results indicated that the MLD-deposited PI effectively preserved the robust redox capacity of the photogenerated electron-hole pairs associated with the catalyst molecules, thereby facilitating more efficient charge transfer. This research presents a novel approach for stabilizing surface-bound small molecules, which may contribute to advancements in heterogeneous catalysis and enhance its commercial viability.
稳定与金属氧化物结合的分子催化剂对于提高其使用寿命和在异相催化中的商业可行性至关重要。这一点在染料敏化光电化学电池(DSPEC)中尤为重要,因为表面结合的发色团和催化剂在水环境中表现出不稳定性,尤其是在 pH 值升高的情况下。在这项工作中,我们成功地利用分子层沉积(MLD)技术稳定了钌基催化剂(RuCP(OH2)2+,简称 RuCat)。通过分子层沉积将聚酰亚胺(PI)应用于多孔纳米 ITO 表面,可显著提高 RuCat 分子在水氧化过程中的稳定性。此外,时间分辨光致发光(TRPL)光谱和飞秒瞬态吸收光谱(fs-TAS)结果表明,MLD 沉积的 PI 有效地保持了与催化剂分子相关的光生电子-空穴对的强大氧化还原能力,从而促进了更有效的电荷转移。这项研究提出了一种稳定表面结合小分子的新方法,有助于推动异相催化技术的发展并提高其商业可行性。
{"title":"Stabilizing molecular catalysts on metal oxide surfaces using molecular layer deposition for efficient water oxidation.","authors":"Hong Wang, Jian Li, Ke Liu, Lei Lei, Xun Chen, Degao Wang","doi":"10.1039/d4mh01274g","DOIUrl":"https://doi.org/10.1039/d4mh01274g","url":null,"abstract":"<p><p>The stabilization of metal-oxide-bound molecular catalysts is essential for enhancing their lifetime and commercial viability in heterogeneous catalysis. This is particularly relevant in dye-sensitized photoelectrochemical cells (DSPECs), where the surface-bound chromophores and catalysts exhibit instability in aqueous environments, particularly at elevated pH levels. In this work, we have successfully employed molecular layer deposition (MLD) to stabilize ruthenium-based catalysts (RuCP(OH<sub>2</sub>)<sup>2+</sup>, denoted as RuCat). The application of polyimide (PI) <i>via</i> MLD onto the porous <i>nano</i>ITO surface significantly improved the stabilization of RuCat molecules for water oxidation. Additionally, time-resolved photoluminescence (TRPL) spectroscopy and femtosecond transient absorption spectroscopy (fs-TAS) results indicated that the MLD-deposited PI effectively preserved the robust redox capacity of the photogenerated electron-hole pairs associated with the catalyst molecules, thereby facilitating more efficient charge transfer. This research presents a novel approach for stabilizing surface-bound small molecules, which may contribute to advancements in heterogeneous catalysis and enhance its commercial viability.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgenia Bogdanova, Modan Liu, Patrick Hodapp, Angana Borbora, Wolfgang Wenzel, Stefan Bräse, André Jung, Zheqin Dong, Pavel A Levkin, Uttam Manna, Tawheed Hashem, Christof Wöll
While the accessible pores render an enormous variety of functionalities to the bulk of metal-organic frameworks (MOFs), the outer surfaces exposed by these crystalline materials also offer unique characteristics not available when using conventional substrates. By grafting hydrocarbon chains to well-defined MOF thin films (SURMOFs) prepared using layer-by-layer methods, we were able to fabricate superhydrophobic substrates with static water contact angles over 160°. A detailed theoretical modelling of the hydrocarbon chains grafted on the outer SURMOF surface with well-defined spacing between anchoring points reveals that the grafted hydrocarbon chains behave similarly to polymer brushes during wetting, where conformational entropy is traded with mixing entropy. The chains are coiled and can access many different conformations, as evidenced directly by infrared spectroscopy. The entropic contributions from the coiled state lead to a pronounced reduction of the surface free energy, rendering superhydrophobic properties to the functionalized SURMOFs. On the other side, the water adhesion strength could be decreased by increasing the surface roughness on the nanometer scale.
{"title":"Functionalization of monolithic MOF thin films with hydrocarbon chains to achieve superhydrophobic surfaces with tunable water adhesion strength.","authors":"Evgenia Bogdanova, Modan Liu, Patrick Hodapp, Angana Borbora, Wolfgang Wenzel, Stefan Bräse, André Jung, Zheqin Dong, Pavel A Levkin, Uttam Manna, Tawheed Hashem, Christof Wöll","doi":"10.1039/d4mh00899e","DOIUrl":"https://doi.org/10.1039/d4mh00899e","url":null,"abstract":"<p><p>While the accessible pores render an enormous variety of functionalities to the bulk of metal-organic frameworks (MOFs), the outer surfaces exposed by these crystalline materials also offer unique characteristics not available when using conventional substrates. By grafting hydrocarbon chains to well-defined MOF thin films (SURMOFs) prepared using layer-by-layer methods, we were able to fabricate superhydrophobic substrates with static water contact angles over 160°. A detailed theoretical modelling of the hydrocarbon chains grafted on the outer SURMOF surface with well-defined spacing between anchoring points reveals that the grafted hydrocarbon chains behave similarly to polymer brushes during wetting, where conformational entropy is traded with mixing entropy. The chains are coiled and can access many different conformations, as evidenced directly by infrared spectroscopy. The entropic contributions from the coiled state lead to a pronounced reduction of the surface free energy, rendering superhydrophobic properties to the functionalized SURMOFs. On the other side, the water adhesion strength could be decreased by increasing the surface roughness on the nanometer scale.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathaniel Hawthorne, Edward J Broker, Yutian Bao, Sayan Banerjee, Quentarius Moore, Camille Cardinal, Jimmy Ha, Ulisses D Braga, Andrew M Rappe, James D Batteas
Using mechanical force to induce chemical reactions with two-dimensional (2D) materials provides an approach for both understanding mechanochemical processes on the molecular level, and a potential method for using mechanical strain as a means of directing the functionalization of 2D materials. To investigate this, we have designed a modular experimental platform which allows for in situ monitoring of reactions on strained graphene via Raman spectroscopy as a function of time. Both the strain present in graphene and the corresponding chemical changes it undergoes in the presence of a reagent can be followed concomitantly. As a case study, we have experimentally monitored and theoretically modeled the reactivity of a suspended single-layer graphene membrane under strain with water, where the graphene is strained via an applied backing pressure. While exposure of the unstrained membrane to water does not drive a chemical reaction, distortion of the membrane causes a rise in the ID/IG peak ratio, indicating an initial lattice conversion from crystalline to nanocrystalline due to reaction with water. With continued reaction, a decrease in the ID/IG peak ratio is then seen, indicative of a nanocrystalline to amorphous lattice transition. Using density functional theory (DFT) calculations, the reaction of water on graphene has been determined to be nucleated by epoxide defects, with the reaction barrier decreasing by nearly 5× for the strained vs. unstrained graphene. While demonstrated here for graphene, this approach also provides the opportunity to examine a host of force-driven chemical reactions with 2D materials.
{"title":"Studies of the mechanically induced reactivity of graphene with water using a 2D-materials strain reactor.","authors":"Nathaniel Hawthorne, Edward J Broker, Yutian Bao, Sayan Banerjee, Quentarius Moore, Camille Cardinal, Jimmy Ha, Ulisses D Braga, Andrew M Rappe, James D Batteas","doi":"10.1039/d4mh01360c","DOIUrl":"https://doi.org/10.1039/d4mh01360c","url":null,"abstract":"<p><p>Using mechanical force to induce chemical reactions with two-dimensional (2D) materials provides an approach for both understanding mechanochemical processes on the molecular level, and a potential method for using mechanical strain as a means of directing the functionalization of 2D materials. To investigate this, we have designed a modular experimental platform which allows for <i>in situ</i> monitoring of reactions on strained graphene <i>via</i> Raman spectroscopy as a function of time. Both the strain present in graphene and the corresponding chemical changes it undergoes in the presence of a reagent can be followed concomitantly. As a case study, we have experimentally monitored and theoretically modeled the reactivity of a suspended single-layer graphene membrane under strain with water, where the graphene is strained <i>via</i> an applied backing pressure. While exposure of the unstrained membrane to water does not drive a chemical reaction, distortion of the membrane causes a rise in the <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> peak ratio, indicating an initial lattice conversion from crystalline to nanocrystalline due to reaction with water. With continued reaction, a decrease in the <i>I</i><sub>D</sub>/<i>I</i><sub>G</sub> peak ratio is then seen, indicative of a nanocrystalline to amorphous lattice transition. Using density functional theory (DFT) calculations, the reaction of water on graphene has been determined to be nucleated by epoxide defects, with the reaction barrier decreasing by nearly 5× for the strained <i>vs.</i> unstrained graphene. While demonstrated here for graphene, this approach also provides the opportunity to examine a host of force-driven chemical reactions with 2D materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Timofeeva, Yuliya Kenzhebayeva, Nikita Burzak, Agniia Bazhenova, Artem Lunev, Alexander S Novikov, Andrey B Bondarenko, Sergei A Shipilovskikh, Vyacheslav A Dyachuk, Valentin A Milichko
The design of fast, endurant, and biocompatible porous frameworks with solvatochromism, aimed to addressing the multiple visual sensing of chemicals, still remains a challenge. Here, we report on a solvatochromic metal-organic framework (MOF) based on cobalt and trimesic acid. We examined its solvatochromism through the solvent exchange and revealed high selectivity to water/dimethylformamide combination. The color change over 50 cycles during the solvent exchange occurs for 0.1 s, being 2 orders of magnitude faster than for existing MOFs. Despite the cobalt content, toxicity assays in vivo and in vitro revealed high biocompatibility of the MOF. The latter allowed implementing the fastest, highly-endurant and biocompatible MOF-based visual sensor of humidity in a desiccator for storage of water-sensitive goods and chemicals. Finally, for such a sensor, we demonstrated its multiple uses through remote light-driven recovery that contributes to the sustainability of this functional MOF.
{"title":"A light-driven ultrafast sensor based on biocompatible solvatochromic metal-organic frameworks.","authors":"Maria Timofeeva, Yuliya Kenzhebayeva, Nikita Burzak, Agniia Bazhenova, Artem Lunev, Alexander S Novikov, Andrey B Bondarenko, Sergei A Shipilovskikh, Vyacheslav A Dyachuk, Valentin A Milichko","doi":"10.1039/d4mh01264j","DOIUrl":"https://doi.org/10.1039/d4mh01264j","url":null,"abstract":"<p><p>The design of fast, endurant, and biocompatible porous frameworks with solvatochromism, aimed to addressing the multiple visual sensing of chemicals, still remains a challenge. Here, we report on a solvatochromic metal-organic framework (MOF) based on cobalt and trimesic acid. We examined its solvatochromism through the solvent exchange and revealed high selectivity to water/dimethylformamide combination. The color change over 50 cycles during the solvent exchange occurs for 0.1 s, being 2 orders of magnitude faster than for existing MOFs. Despite the cobalt content, toxicity assays <i>in vivo</i> and <i>in vitro</i> revealed high biocompatibility of the MOF. The latter allowed implementing the fastest, highly-endurant and biocompatible MOF-based visual sensor of humidity in a desiccator for storage of water-sensitive goods and chemicals. Finally, for such a sensor, we demonstrated its multiple uses through remote light-driven recovery that contributes to the sustainability of this functional MOF.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu
Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na+ conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.
{"title":"Sulfide electrolytes for all-solid-state sodium batteries: fundamentals and modification strategies.","authors":"Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu","doi":"10.1039/d4mh01218f","DOIUrl":"https://doi.org/10.1039/d4mh01218f","url":null,"abstract":"<p><p>Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na<sup>+</sup> conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lufeng Wang, Shiju Yang, Lixue Yang, Yang Guo, Yiyao Zhang, Xiong Li, Hongzhi Wang, Liping Zhu, Meifang Zhu, Jiuke Mu
Electrothermal-driven polymer fiber-based artificial muscles with helical or twisted structures are promising due to their low cost and high energy density output. However, the current cooling methods for these muscles, such as natural cooling or cold-liquid baths, limit their actuation frequency, especially for large-diameter artificial muscles, posing a technical barrier to their broader application. In this study, we developed an advanced tubular fluidic pump by introducing carbon nanotube electrodes, achieving pumping capabilities over 2 times that of conventional electrodes. We integrated this pump with tubular fiber artificial muscles, creating fluid pump-cooled electrothermal artificial muscle systems with parallel and series configurations. This integration reduced cooling time to about one-ninth of the original and increased mechanical energy output power density by 3 times, expanding the effective actuation frequency range by 3.5 times. Additionally, to effective control artificial muscle actuation, we incorporated a resistive sensing layer directly onto the surface of the artificial muscles, enabling position monitoring. On the application front, we demonstrated the potential of these artificial muscles in thermally responsive functional composite materials, deformable mechanical components, and bionic origami wrist joints.
{"title":"Integrated thermal management-sensing-actuation functional artificial muscles.","authors":"Lufeng Wang, Shiju Yang, Lixue Yang, Yang Guo, Yiyao Zhang, Xiong Li, Hongzhi Wang, Liping Zhu, Meifang Zhu, Jiuke Mu","doi":"10.1039/d4mh01303d","DOIUrl":"https://doi.org/10.1039/d4mh01303d","url":null,"abstract":"<p><p>Electrothermal-driven polymer fiber-based artificial muscles with helical or twisted structures are promising due to their low cost and high energy density output. However, the current cooling methods for these muscles, such as natural cooling or cold-liquid baths, limit their actuation frequency, especially for large-diameter artificial muscles, posing a technical barrier to their broader application. In this study, we developed an advanced tubular fluidic pump by introducing carbon nanotube electrodes, achieving pumping capabilities over 2 times that of conventional electrodes. We integrated this pump with tubular fiber artificial muscles, creating fluid pump-cooled electrothermal artificial muscle systems with parallel and series configurations. This integration reduced cooling time to about one-ninth of the original and increased mechanical energy output power density by 3 times, expanding the effective actuation frequency range by 3.5 times. Additionally, to effective control artificial muscle actuation, we incorporated a resistive sensing layer directly onto the surface of the artificial muscles, enabling position monitoring. On the application front, we demonstrated the potential of these artificial muscles in thermally responsive functional composite materials, deformable mechanical components, and bionic origami wrist joints.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Next-generation fabrics with excellent protection and intelligent sensing abilities will be beneficial to protect the elderly from accidents, as the ageing population will be a global challenge in the next decade. However, for widely used techniques such as fabric coating and multi-layer compositing, maintaining a balance between comfortability, stable anti-impact protection, and multi-function such as intelligent monitoring remains elusive. Herein, a full-fiber composite yarn with triboelectric ability was developed, which was then woven into an origami-structured knitted fabric (OSKF). Due to the coaxial torsional structure, the composite yarn exhibited outstanding fracture strength (219.18 MPa). The full-fiber multi-scale structure design endowed the OSKF with significantly improved energy absorption capacity (absorbing > 85% of the applied force) and the desired self-powered sensing performance without affecting the comfortability. The OSKF also had a unique ability to respond to various hazardous situations, such as external mechanical force stimuli, cutting by a sharp object, and accidental falls. This work sheds light on a new path toward the design of next-generation smart protection wearables based on knitted fabric structure design-based full-fiber materials.
{"title":"Full-fiber triboelectric nanogenerators with knitted origami structures for high impact resistance intelligent protection fabric.","authors":"Guilin Wu, Minjie Xu, Mengdie Lei, Mingmin Liao, Yongyue Luo, Yiwei OuYang, Jize Liu, Guangming Cai","doi":"10.1039/d4mh01310g","DOIUrl":"https://doi.org/10.1039/d4mh01310g","url":null,"abstract":"<p><p>Next-generation fabrics with excellent protection and intelligent sensing abilities will be beneficial to protect the elderly from accidents, as the ageing population will be a global challenge in the next decade. However, for widely used techniques such as fabric coating and multi-layer compositing, maintaining a balance between comfortability, stable anti-impact protection, and multi-function such as intelligent monitoring remains elusive. Herein, a full-fiber composite yarn with triboelectric ability was developed, which was then woven into an origami-structured knitted fabric (OSKF). Due to the coaxial torsional structure, the composite yarn exhibited outstanding fracture strength (219.18 MPa). The full-fiber multi-scale structure design endowed the OSKF with significantly improved energy absorption capacity (absorbing > 85% of the applied force) and the desired self-powered sensing performance without affecting the comfortability. The OSKF also had a unique ability to respond to various hazardous situations, such as external mechanical force stimuli, cutting by a sharp object, and accidental falls. This work sheds light on a new path toward the design of next-generation smart protection wearables based on knitted fabric structure design-based full-fiber materials.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihao Wang, Xianmei Chen, Tingting Wang, Mingshuo Tang, Zhiwei He, Yunlong Wang, Jun Ma
The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy-1, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned via the solid content and extent of acrylate modification. The combination of rapid readout, low dose response, high spatial resolution, and great pre-irradiation and post-irradiation stability highlights the translational potential of this technology for topographical dose mapping in clinical radiotherapy applications.
{"title":"A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy.","authors":"Zhihao Wang, Xianmei Chen, Tingting Wang, Mingshuo Tang, Zhiwei He, Yunlong Wang, Jun Ma","doi":"10.1039/d4mh01235f","DOIUrl":"https://doi.org/10.1039/d4mh01235f","url":null,"abstract":"<p><p>The precise, rapid and direct visualization of 3D topographical dose in the target tissue that is crucial for effective radiation therapy remains a challenge. Herein, by combining hydrogel photonic crystals with film stacking or 3D printing, a 3D radiochromic dosimeter with a dose sensitivity of up to 10 nm Gy<sup>-1</sup>, a spatial resolution <50 μm, and the ability to detect complex 3D topographical dose distribution was proposed for clinical radiation dose verification. The sensitivity and response range of the dosimeter by radiation-induced polymer cross-linking and consequent Bragg wavelength shift can be tuned <i>via</i> the solid content and extent of acrylate modification. The combination of rapid readout, low dose response, high spatial resolution, and great pre-irradiation and post-irradiation stability highlights the translational potential of this technology for topographical dose mapping in clinical radiotherapy applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengming Hu, Qian Zhou, Ruolin Liu, Yanfei Zhu, Yuanzhe Liang, Dan Fang, Bing Ji, Zhiming Chen, Jianyi Luo, Bingpu Zhou
Electronic skin (E-skin) has attracted considerable attention for simulating the human sensory system for use in prosthetics, human-machine interactions, and healthcare monitoring. However, it is still challenging to fully mimic the skin function that can de-couple stimuli such as normal/tangential forces, contact/non-contact behaviors, and react to high-frequency inputs. Herein, we propose fully bionic E-skin (FBE-skin), which consists of a magnetized micro-cilia array (MMCA), a micro-dome array (MDA), and flexible electrodes to completely duplicate the hairy layer, epidermis/dermis interface, and subcutaneous mechanoreceptors of human skin. The optimized MDA and interdigital electrode enable the FBE-skin to perceive static forces with a linear sensitivity of 96.6 kPa-1 up to 100 kPa, while the branch of electromagnetic induction allows the FBE-skin to sensitively capture dynamic stimuli with vibrating signals up to 100 Hz. The top-down integration of MDA and MMCA not only replicates the three-dimensional structure of human skin, but also synergistically provides the FBE-skin with bionic rapidly adapting (RA) and slowly adapting (SA) receptors. Consequently, the FBE-skin is capable of perceiving dynamic/static, normal/tangential, and contact/non-contact stimuli with a broad range of working pressures and frequencies. We expect that the design of FBE-skin will be promising for widespread applications from intelligent sensing to human-machine interactions.
{"title":"Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception.","authors":"Fengming Hu, Qian Zhou, Ruolin Liu, Yanfei Zhu, Yuanzhe Liang, Dan Fang, Bing Ji, Zhiming Chen, Jianyi Luo, Bingpu Zhou","doi":"10.1039/d4mh01217h","DOIUrl":"https://doi.org/10.1039/d4mh01217h","url":null,"abstract":"<p><p>Electronic skin (E-skin) has attracted considerable attention for simulating the human sensory system for use in prosthetics, human-machine interactions, and healthcare monitoring. However, it is still challenging to fully mimic the skin function that can de-couple stimuli such as normal/tangential forces, contact/non-contact behaviors, and react to high-frequency inputs. Herein, we propose fully bionic E-skin (FBE-skin), which consists of a magnetized micro-cilia array (MMCA), a micro-dome array (MDA), and flexible electrodes to completely duplicate the hairy layer, epidermis/dermis interface, and subcutaneous mechanoreceptors of human skin. The optimized MDA and interdigital electrode enable the FBE-skin to perceive static forces with a linear sensitivity of 96.6 kPa<sup>-1</sup> up to 100 kPa, while the branch of electromagnetic induction allows the FBE-skin to sensitively capture dynamic stimuli with vibrating signals up to 100 Hz. The top-down integration of MDA and MMCA not only replicates the three-dimensional structure of human skin, but also synergistically provides the FBE-skin with bionic rapidly adapting (RA) and slowly adapting (SA) receptors. Consequently, the FBE-skin is capable of perceiving dynamic/static, normal/tangential, and contact/non-contact stimuli with a broad range of working pressures and frequencies. We expect that the design of FBE-skin will be promising for widespread applications from intelligent sensing to human-machine interactions.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}