Towards Co-Evolution of Data-Centric Ecosystems.

Robert Schuler, Karl Czajkowski, Mike D'Arcy, Hongsuda Tangmunarunkit, Carl Kesselman
{"title":"Towards Co-Evolution of Data-Centric Ecosystems.","authors":"Robert Schuler,&nbsp;Karl Czajkowski,&nbsp;Mike D'Arcy,&nbsp;Hongsuda Tangmunarunkit,&nbsp;Carl Kesselman","doi":"10.1145/3400903.3400908","DOIUrl":null,"url":null,"abstract":"<p><p>Database evolution is a notoriously difficult task, and it is exacerbated by the necessity to evolve database-dependent applications. As science becomes increasingly dependent on sophisticated data management, the need to evolve an array of database-driven systems will only intensify. In this paper, we present an architecture for data-centric ecosystems that allows the components to seamlessly co-evolve by centralizing the models and mappings at the data service and pushing model-adaptive interactions to the database clients. Boundary objects fill the gap where applications are unable to adapt and need a stable interface to interact with the components of the ecosystem. Finally, evolution of the ecosystem is enabled via integrated schema modification and model management operations. We present use cases from actual experiences that demonstrate the utility of our approach.</p>","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3400903.3400908","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400903.3400908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Database evolution is a notoriously difficult task, and it is exacerbated by the necessity to evolve database-dependent applications. As science becomes increasingly dependent on sophisticated data management, the need to evolve an array of database-driven systems will only intensify. In this paper, we present an architecture for data-centric ecosystems that allows the components to seamlessly co-evolve by centralizing the models and mappings at the data service and pushing model-adaptive interactions to the database clients. Boundary objects fill the gap where applications are unable to adapt and need a stable interface to interact with the components of the ecosystem. Finally, evolution of the ecosystem is enabled via integrated schema modification and model management operations. We present use cases from actual experiences that demonstrate the utility of our approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向以数据为中心的生态系统的共同进化。
众所周知,数据库演化是一项非常困难的任务,而演化依赖于数据库的应用程序的必要性又加剧了这种困难。随着科学越来越依赖于复杂的数据管理,发展一系列数据库驱动系统的需求只会加剧。在本文中,我们提出了一种以数据为中心的生态系统的体系结构,通过在数据服务中集中模型和映射,并向数据库客户端推送自适应模型的交互,允许组件无缝地共同进化。边界对象填补了应用程序无法适应的空白,需要一个稳定的接口来与生态系统的组件进行交互。最后,生态系统的进化是通过集成的模式修改和模型管理操作来实现的。我们给出了来自实际经验的用例,这些用例演示了我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1