Hanyue Li, Shengyu Luo, Hongtao Li, Hongyu Pan, Li Jiang, Yixuan Chen, Hui Chen, Zhenhua Feng, Sen Li
{"title":"From fetal tendon regeneration to adult therapeutic modalities: TGF-β3 in scarless healing.","authors":"Hanyue Li, Shengyu Luo, Hongtao Li, Hongyu Pan, Li Jiang, Yixuan Chen, Hui Chen, Zhenhua Feng, Sen Li","doi":"10.2217/rme-2023-0145","DOIUrl":null,"url":null,"abstract":"<p><p>Tendon injuries are common disorders that can significantly impact people's lives. Unfortunately, the limited regenerative ability of tendons results in tissue healing in a scar-mediated manner. The current therapeutic strategies fail to fully recover the functions of the injured tendons, and as such, the conception of 'scarless healing' has gained prominent attention in the field of regenerative medicine. Interestingly, injured fetal tendons possess the capability to heal through regeneration, which builds an ideal blueprint for adult tendon regeneration. Studies have shown that fetal biochemical cues have the potential to improve adult tendon healing. Here we review the biological factors that contribute to fetal tendon regeneration and how manipulation of these biochemical cues in the adult tendon healing process could achieve regeneration.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"809-822"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2023-0145","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Tendon injuries are common disorders that can significantly impact people's lives. Unfortunately, the limited regenerative ability of tendons results in tissue healing in a scar-mediated manner. The current therapeutic strategies fail to fully recover the functions of the injured tendons, and as such, the conception of 'scarless healing' has gained prominent attention in the field of regenerative medicine. Interestingly, injured fetal tendons possess the capability to heal through regeneration, which builds an ideal blueprint for adult tendon regeneration. Studies have shown that fetal biochemical cues have the potential to improve adult tendon healing. Here we review the biological factors that contribute to fetal tendon regeneration and how manipulation of these biochemical cues in the adult tendon healing process could achieve regeneration.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.