Benchtop Models of Patient-Specific Intraventricular Flow During Heart Failure and LVAD Support.

IF 1.7 4区 医学 Q4 BIOPHYSICS Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2023-11-01 DOI:10.1115/1.4063147
Vi Vu, Lorenzo Rossini, Juan C Del Alamo, Walter Dembitsky, Richard A Gray, Karen May-Newman
{"title":"Benchtop Models of Patient-Specific Intraventricular Flow During Heart Failure and LVAD Support.","authors":"Vi Vu, Lorenzo Rossini, Juan C Del Alamo, Walter Dembitsky, Richard A Gray, Karen May-Newman","doi":"10.1115/1.4063147","DOIUrl":null,"url":null,"abstract":"<p><p>The characterization of intraventricular flow is critical to evaluate the efficiency of fluid transport and potential thromboembolic risk but challenging to measure directly in advanced heart failure (HF) patients with left ventricular assist device (LVAD) support. The study aims to validate an in-house mock loop (ML) by simulating specific conditions of HF patients with normal and prosthetic mitral valves (MV) and LVAD patients with small and dilated left ventricle volumes, then comparing the flow-related indices result of vortex parameters, residence time (RT), and shear-activation potential (SAP). Patient-specific inputs for the ML studies included heart rate, end-diastolic and end-systolic volumes, ejection fraction, aortic pressure, E/A ratio, and LVAD speed. The ML effectively replicated vortex development and circulation patterns, as well as RT, particularly for HF patient cases. The LVAD velocity fields reflected altered flow paths, in which all or most incoming blood formed a dominant stream directing flow straight from the mitral valve to the apex. RT estimation of patient and ML compared well for all conditions, but SAP was substantially higher in the LVAD cases of the ML. The benchtop system generated comparable and reproducible hemodynamics and fluid dynamics for patient-specific conditions, validating its reliability and clinical relevance. This study demonstrated that ML is a suitable platform to investigate the fluid dynamics of HF and LVAD patients and can be utilized to investigate heart-implant interactions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10777504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The characterization of intraventricular flow is critical to evaluate the efficiency of fluid transport and potential thromboembolic risk but challenging to measure directly in advanced heart failure (HF) patients with left ventricular assist device (LVAD) support. The study aims to validate an in-house mock loop (ML) by simulating specific conditions of HF patients with normal and prosthetic mitral valves (MV) and LVAD patients with small and dilated left ventricle volumes, then comparing the flow-related indices result of vortex parameters, residence time (RT), and shear-activation potential (SAP). Patient-specific inputs for the ML studies included heart rate, end-diastolic and end-systolic volumes, ejection fraction, aortic pressure, E/A ratio, and LVAD speed. The ML effectively replicated vortex development and circulation patterns, as well as RT, particularly for HF patient cases. The LVAD velocity fields reflected altered flow paths, in which all or most incoming blood formed a dominant stream directing flow straight from the mitral valve to the apex. RT estimation of patient and ML compared well for all conditions, but SAP was substantially higher in the LVAD cases of the ML. The benchtop system generated comparable and reproducible hemodynamics and fluid dynamics for patient-specific conditions, validating its reliability and clinical relevance. This study demonstrated that ML is a suitable platform to investigate the fluid dynamics of HF and LVAD patients and can be utilized to investigate heart-implant interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心力衰竭和LVAD支持期间患者特异性心室内血流的台式模型。
心室内血流的特征对于评估液体输送的效率和潜在的血栓栓塞风险至关重要,但在有左心室辅助装置(LVAD)支持的晚期心力衰竭(HF)患者中直接测量具有挑战性。该研究旨在通过模拟具有正常和人工二尖瓣(MV)的HF患者和具有小且扩张的左心室容积的LVAD患者的特定条件,然后比较涡流参数、停留时间(RT)和剪切激活电位(SAP)的流量相关指标结果,来验证内部模拟环路(ML)。ML研究的患者特异性输入包括心率、舒张末期和收缩末期容积、射血分数、主动脉压、E/A比和LVAD速度。ML有效地复制了涡流发展和循环模式,以及RT,特别是对于HF患者。LVAD速度场反映了流动路径的改变,在流动路径中,所有或大多数进入的血液形成了主导流,直接从二尖瓣流向心尖。在所有情况下,患者和ML的RT估计比较良好,但在ML的LVAD病例中,SAP明显更高。台式系统在患者特定情况下产生了可比较且可重复的血液动力学和流体动力学,验证了其可靠性和临床相关性。这项研究表明,ML是研究HF和LVAD患者流体动力学的合适平台,可用于研究心脏植入物的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
期刊最新文献
Computational Study on the Effects of Valve Orientation on the Hemodynamics and Leaflet Dynamics of Bioprosthetic Pulmonary Valves. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired. Topology Optimization Driven Bone-Remodeling Simulation for Lumbar Interbody Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1