首页 > 最新文献

Journal of Biomechanical Engineering-Transactions of the Asme最新文献

英文 中文
Variation in Layer-Specific Tear Properties of the Human Aorta Along Its Length and Circumference: Implications for Spatial Susceptibility to Dissection Initiation.
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-02-14 DOI: 10.1115/1.4067912
Dimitrios P Sokolis

Hemodynamic variations influence the location of entry tears in aortic dissection. This study investigates whether variations in tear strength across the human aorta contribute to these clinical manifestations. Circumferential and axial strips were collected from nine axial and two circumferential sites along each autopsied aorta, yielding 1,188 samples (11 aortas × 18 sites × 2 directions × 3 layers per site). These samples underwent tear testing to assess tear strength and tear energy, constituting resistance to tear propagation. Adventitial tear parameters were significantly higher than those of the intima and media, with no significant differences between the latter two, supporting the observation that entry tears typically occur in the inner wall. Tear propagation angles were approximately 15 and 75 degrees for circumferential and axial medial strips, and 30 and 45 degrees for circumferential and axial strips of the intima and adventitia, with minimal variation along the aorta. These findings indicate that the media, and to a lesser extent the other layers, have higher resistance to axial tearing compared to circumferential tearing, aligning with the clinical observation of circumferentially directed tears. Intimal and adventitial tear parameters increased modestly along the aorta, while medial parameters varied less, explaining why entry tears rarely originate in the abdominal aorta. Tear parameters in inner and outer quadrants were similar at most axial locations, except for dissimilar tear propagation angles of the intima and adventitia in the proximal aorta (especially the arch), explaining why entry tears seldom involve the entire circumference.

{"title":"Variation in Layer-Specific Tear Properties of the Human Aorta Along Its Length and Circumference: Implications for Spatial Susceptibility to Dissection Initiation.","authors":"Dimitrios P Sokolis","doi":"10.1115/1.4067912","DOIUrl":"https://doi.org/10.1115/1.4067912","url":null,"abstract":"<p><p>Hemodynamic variations influence the location of entry tears in aortic dissection. This study investigates whether variations in tear strength across the human aorta contribute to these clinical manifestations. Circumferential and axial strips were collected from nine axial and two circumferential sites along each autopsied aorta, yielding 1,188 samples (11 aortas × 18 sites × 2 directions × 3 layers per site). These samples underwent tear testing to assess tear strength and tear energy, constituting resistance to tear propagation. Adventitial tear parameters were significantly higher than those of the intima and media, with no significant differences between the latter two, supporting the observation that entry tears typically occur in the inner wall. Tear propagation angles were approximately 15 and 75 degrees for circumferential and axial medial strips, and 30 and 45 degrees for circumferential and axial strips of the intima and adventitia, with minimal variation along the aorta. These findings indicate that the media, and to a lesser extent the other layers, have higher resistance to axial tearing compared to circumferential tearing, aligning with the clinical observation of circumferentially directed tears. Intimal and adventitial tear parameters increased modestly along the aorta, while medial parameters varied less, explaining why entry tears rarely originate in the abdominal aorta. Tear parameters in inner and outer quadrants were similar at most axial locations, except for dissimilar tear propagation angles of the intima and adventitia in the proximal aorta (especially the arch), explaining why entry tears seldom involve the entire circumference.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-61"},"PeriodicalIF":1.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical Comparison of Human Walking Locomotion on Solid Ground and Sand.
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-02-10 DOI: 10.1115/1.4067842
Chunchu Zhu, Xunjie Chen, Jingang Yi

Current studies on human locomotion focus mainly on solid ground walking conditions. In this paper, we present a biomechanic comparison of human walking locomotion on solid ground and sand. A novel dataset containing 3-dimensional motion and biomechanical data from 20 able-bodied adults for locomotion on solid ground and sand is collected. We present the data collection methods and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics. The results reveal significant gait adaptations to the yielding terrain (i.e., sand), such as increased stance duration, reduced push-off force, and altered joint angles and moments. Specifically, the knee angle during the gait cycle on sand shows a delayed peak flexion and an increased overall magnitude, highlighting an adaptation to maintain stability on yielding terrain. These adjustments, including changes in joint timing and energy conservation mechanisms, provide insights into the motion control strategies humans adopt to navigate on yielding terrains. The dataset, containing synchronized ground reaction forces (GRFs) and kinematic data, offers a valuable resource for further exploration in foot-terrain interactions and human walking assistive devices development on yielding terrains.

{"title":"Biomechanical Comparison of Human Walking Locomotion on Solid Ground and Sand.","authors":"Chunchu Zhu, Xunjie Chen, Jingang Yi","doi":"10.1115/1.4067842","DOIUrl":"https://doi.org/10.1115/1.4067842","url":null,"abstract":"<p><p>Current studies on human locomotion focus mainly on solid ground walking conditions. In this paper, we present a biomechanic comparison of human walking locomotion on solid ground and sand. A novel dataset containing 3-dimensional motion and biomechanical data from 20 able-bodied adults for locomotion on solid ground and sand is collected. We present the data collection methods and report the sensor data along with the kinematic and kinetic profiles of joint biomechanics. The results reveal significant gait adaptations to the yielding terrain (i.e., sand), such as increased stance duration, reduced push-off force, and altered joint angles and moments. Specifically, the knee angle during the gait cycle on sand shows a delayed peak flexion and an increased overall magnitude, highlighting an adaptation to maintain stability on yielding terrain. These adjustments, including changes in joint timing and energy conservation mechanisms, provide insights into the motion control strategies humans adopt to navigate on yielding terrains. The dataset, containing synchronized ground reaction forces (GRFs) and kinematic data, offers a valuable resource for further exploration in foot-terrain interactions and human walking assistive devices development on yielding terrains.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-11"},"PeriodicalIF":1.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143384140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Influence of Feature Selection Methods on a Random Forest Model for Gait Time Series Prediction using IMUs.
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-02-07 DOI: 10.1115/1.4067821
Shima/M Moghadam, Julie Choisne

Despite the increasing use of IMUs and machine learning techniques for gait analysis, there remains a gap in which feature selection methods is best tailored for gait time series prediction. This study explores the impact of using various feature selection methods on the performance of a Random Forest (RF) model in predicting lower limb joints kinematics from two IMUs. This study primary objectives are: 1) Comparing eight feature selection methods based on their ability to identify more robust feature sets, time efficiency, and impact on RF models? performance, and 2) assessing the performance of RF models using generalized feature sets on a new dataset. Twenty-three typically developed children (ages 6 to 15) participated in data collection involving Optical Motion Capture, and IMUs. Joint kinematics were computed using OpenSim. By employing eight feature selection methods (four filter and four embedded methods), the study identified 30 important features for each target. These selected features were used to develop personalized and generalized RF models to predict lower limbs joints kinematics during gait. This study reveals that various feature selection methods have a minimal impact on the performance of personalized and generalized RF models. However, the RF and Mutual Information (MI) methods provided slightly lower errors and outliers. MI demonstrated remarkable robustness by consistently identifying the most common features across different participants. ElasticNet emerged as the fastest method. Overall, the study illuminated the robustness of RF models in predicting joint kinematics during gait in children, showcasing consistent performance across various feature selection methods.

{"title":"Exploring the Influence of Feature Selection Methods on a Random Forest Model for Gait Time Series Prediction using IMUs.","authors":"Shima/M Moghadam, Julie Choisne","doi":"10.1115/1.4067821","DOIUrl":"https://doi.org/10.1115/1.4067821","url":null,"abstract":"<p><p>Despite the increasing use of IMUs and machine learning techniques for gait analysis, there remains a gap in which feature selection methods is best tailored for gait time series prediction. This study explores the impact of using various feature selection methods on the performance of a Random Forest (RF) model in predicting lower limb joints kinematics from two IMUs. This study primary objectives are: 1) Comparing eight feature selection methods based on their ability to identify more robust feature sets, time efficiency, and impact on RF models? performance, and 2) assessing the performance of RF models using generalized feature sets on a new dataset. Twenty-three typically developed children (ages 6 to 15) participated in data collection involving Optical Motion Capture, and IMUs. Joint kinematics were computed using OpenSim. By employing eight feature selection methods (four filter and four embedded methods), the study identified 30 important features for each target. These selected features were used to develop personalized and generalized RF models to predict lower limbs joints kinematics during gait. This study reveals that various feature selection methods have a minimal impact on the performance of personalized and generalized RF models. However, the RF and Mutual Information (MI) methods provided slightly lower errors and outliers. MI demonstrated remarkable robustness by consistently identifying the most common features across different participants. ElasticNet emerged as the fastest method. Overall, the study illuminated the robustness of RF models in predicting joint kinematics during gait in children, showcasing consistent performance across various feature selection methods.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-16"},"PeriodicalIF":1.7,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Force-Sensor-Less Approach for Rapid Young's Modulus Identification of Heterogeneous Soft Tissue.
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-01-28 DOI: 10.1115/1.4067735
Zhen Wang, Tian Xu, Mengruo Sheng, Yong Lei

Due to individual differences, accurate identification of tissue elastic parameters is essential for biomechanical modeling in surgical guidance for hepatic venous injections. This paper aims to acquire the absolute Young's modulus of heterogeneous soft tissues during endoscopic surgery with 2D ultrasound images. First, we introduced a force-sensor-less approach that utilizes a pre-calibrated soft patch with a known Young's modulus and its ultrasound images to calculate the external forces exerted by the probe on the tissue. Second, we introduced a Kriging-based inverse algorithm to identify the relative Young's modulus (RYM) between the inclusion and the background tissue. The RYM was estimated based on 2D plane strain approximation and mapped to the RYM of 3D soft tissue through a trained Kriging model. Finally, we developed a direct method to identify the background Young's modulus (BYM) based on calculated external forces and RYM. The simulation results demonstrate the high efficiency and robustness of the Kriging-based inverse algorithm in identifying RYM. Physical experiments on the three phantoms show that the errors of the identified BYM and RYM are all below 15%. The proposed methodology for Young's modulus identification is feasible and achieves satisfactory accuracy and computational efficiency in both simulations and physical experiments.

{"title":"A Force-Sensor-Less Approach for Rapid Young's Modulus Identification of Heterogeneous Soft Tissue.","authors":"Zhen Wang, Tian Xu, Mengruo Sheng, Yong Lei","doi":"10.1115/1.4067735","DOIUrl":"https://doi.org/10.1115/1.4067735","url":null,"abstract":"<p><p>Due to individual differences, accurate identification of tissue elastic parameters is essential for biomechanical modeling in surgical guidance for hepatic venous injections. This paper aims to acquire the absolute Young's modulus of heterogeneous soft tissues during endoscopic surgery with 2D ultrasound images. First, we introduced a force-sensor-less approach that utilizes a pre-calibrated soft patch with a known Young's modulus and its ultrasound images to calculate the external forces exerted by the probe on the tissue. Second, we introduced a Kriging-based inverse algorithm to identify the relative Young's modulus (RYM) between the inclusion and the background tissue. The RYM was estimated based on 2D plane strain approximation and mapped to the RYM of 3D soft tissue through a trained Kriging model. Finally, we developed a direct method to identify the background Young's modulus (BYM) based on calculated external forces and RYM. The simulation results demonstrate the high efficiency and robustness of the Kriging-based inverse algorithm in identifying RYM. Physical experiments on the three phantoms show that the errors of the identified BYM and RYM are all below 15%. The proposed methodology for Young's modulus identification is feasible and achieves satisfactory accuracy and computational efficiency in both simulations and physical experiments.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-8"},"PeriodicalIF":1.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Combined Neurotoxicity of Amyloid Beta and Tau Oligomers in Alzheimer's Disease: A Novel Cellular-Level Criterion. 评估β淀粉样蛋白和Tau寡聚物在阿尔茨海默病中的联合神经毒性:一种新的细胞水平标准。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-01-22 DOI: 10.1115/1.4067701
Andrey Kuznetsov

A criterion characterizing the combined neurotoxicity of amyloid beta and tau oligomers is suggested. A mathematical model that makes it possible to calculate a value of this criterion during senile plaque and NFT formation is proposed. Computations show that for physiologically relevant parameter values, the value of the criterion increases approximately linearly as time increases. Once the formation of neurofibrillary tangles starts in addition to the senile plaque formation, the slope characterizing the rate at which the criterion increases becomes larger. The critical value of the criterion upon reaching which the neuron dies is estimated. Computations predict that unless the production rates of amyloid beta and tau monomers are very large, in order for the accumulated toxicity to reach the critical value, the degradation machinery responsible for the degradation of amyloid beta and tau must become dysfunctional. The value of the criterion after 20 years of the aggregation process is strongly influenced by deposition rates of amyloid beta and tau oligomers into senile plaques and NFTs. This suggests that deposition of amyloid beta and tau oligomers into senile plaques and NFTs may reduce accumulated toxicity by sequestering more toxic oligomeric species into less toxic insoluble aggregates.

提出了一种评价淀粉样蛋白和tau寡聚物联合神经毒性的标准。提出了一种数学模型,可以计算老年斑和NFT形成过程中该准则的值。计算表明,对于生理相关参数值,判据的值随着时间的增加近似线性增加。一旦神经原纤维缠结的形成和老年斑的形成一起开始,表征标准增加速率的斜率就会变大。估计达到该标准时神经元死亡的临界值。计算预测,除非β -淀粉样蛋白和tau单体的生成速率非常大,否则为了使累积的毒性达到临界值,负责β -淀粉样蛋白和tau降解的降解机制必须变得功能失调。经过20年的聚集过程后,该标准的价值受到β -淀粉样蛋白和tau低聚物在老年斑和nft中的沉积速率的强烈影响。这表明β -淀粉样蛋白和tau低聚物沉积在老年斑和nft中,可能通过将毒性较大的低聚物隔离成毒性较小的不溶性聚集体来减少累积的毒性。
{"title":"Evaluating the Combined Neurotoxicity of Amyloid Beta and Tau Oligomers in Alzheimer's Disease: A Novel Cellular-Level Criterion.","authors":"Andrey Kuznetsov","doi":"10.1115/1.4067701","DOIUrl":"https://doi.org/10.1115/1.4067701","url":null,"abstract":"<p><p>A criterion characterizing the combined neurotoxicity of amyloid beta and tau oligomers is suggested. A mathematical model that makes it possible to calculate a value of this criterion during senile plaque and NFT formation is proposed. Computations show that for physiologically relevant parameter values, the value of the criterion increases approximately linearly as time increases. Once the formation of neurofibrillary tangles starts in addition to the senile plaque formation, the slope characterizing the rate at which the criterion increases becomes larger. The critical value of the criterion upon reaching which the neuron dies is estimated. Computations predict that unless the production rates of amyloid beta and tau monomers are very large, in order for the accumulated toxicity to reach the critical value, the degradation machinery responsible for the degradation of amyloid beta and tau must become dysfunctional. The value of the criterion after 20 years of the aggregation process is strongly influenced by deposition rates of amyloid beta and tau oligomers into senile plaques and NFTs. This suggests that deposition of amyloid beta and tau oligomers into senile plaques and NFTs may reduce accumulated toxicity by sequestering more toxic oligomeric species into less toxic insoluble aggregates.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-46"},"PeriodicalIF":1.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing. 在体外膝关节测试中使用功能性关节坐标系统的好处。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-01-22 DOI: 10.1115/1.4067700
Tara Nagle, Jeremy G Loss, Robb Colbrunn

To measure knee joint kinematics, coordinate systems (CS) must be assigned to the tibia and femur. Functional CS have been shown to be more reproducible than Anatomical. This study aims to quantify the benefits of using Functional CS in in vitro testing. Seven cadaveric knee joints were loaded in a 6-Degree of Freedom (DOF) joint simulator. Anatomical CS were established for each joint and Functional CS were calculated based on joint kinematics during passive motion. Loading profiles were applied to the knee joints using different CS definitions. Resulting kinematics and kinetics were obtained to quantify the 1) reduction in intra-knee kinematic response variation, 2) reduction in kinematic cross-talk, 3) reduction in inter-knee kinematic response variation, and 4) improvement in force control performance, when using Functional CS compared to Anatomical. Functional CS, compared to Anatomical, 1) significantly reduced intra-knee kinematic response variation across 12 combined loading conditions for nearly all DOF, 2) significantly reduced kinematic cross-talk during anterior-posterior, varus-valgus and internal-external rotation laxity testing across many DOF, 3) significantly reduced inter-knee kinematic response variation for all DOFs over a gait profile and combined loading conditions, and 4) significantly improved Anterior-Posterior and Varus-Valgus force/torque control performance during dynamic loading profiles. The advantage of using Functional CS for in vitro testing has been demonstrated across all considered domains. Functional CS should be used when performing in vitro knee joint testing.

为了测量膝关节的运动学,坐标系统(CS)必须分配到胫骨和股骨。功能性CS已被证明比解剖性CS更具可重复性。本研究旨在量化在体外测试中使用功能性CS的好处。在6自由度关节模拟器中加载了7个尸体膝关节。建立每个关节的解剖CS,并根据关节在被动运动时的运动学计算功能CS。使用不同的CS定义将加载剖面应用于膝关节。得到的运动学和动力学结果用于量化使用功能性CS与解剖性CS相比,1)膝关节内运动响应变化减少,2)运动串扰减少,3)膝关节间运动响应变化减少,4)力控制性能改善。功能性CS与解剖学相比,1)在几乎所有DOF的12种组合加载条件下显著降低了膝关节内的运动学响应变化,2)在许多DOF的前后、内外翻和内外旋转松弛测试中显著降低了运动学串音,3)在步态特征和组合加载条件下显著降低了所有DOF的膝关节间运动学响应变化。4)在动态加载剖面下,前后和内翻力/扭矩控制性能显著改善。使用功能性CS进行体外测试的优势已在所有考虑的领域得到证明。在进行体外膝关节试验时应使用功能性CS。
{"title":"Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing.","authors":"Tara Nagle, Jeremy G Loss, Robb Colbrunn","doi":"10.1115/1.4067700","DOIUrl":"https://doi.org/10.1115/1.4067700","url":null,"abstract":"<p><p>To measure knee joint kinematics, coordinate systems (CS) must be assigned to the tibia and femur. Functional CS have been shown to be more reproducible than Anatomical. This study aims to quantify the benefits of using Functional CS in in vitro testing. Seven cadaveric knee joints were loaded in a 6-Degree of Freedom (DOF) joint simulator. Anatomical CS were established for each joint and Functional CS were calculated based on joint kinematics during passive motion. Loading profiles were applied to the knee joints using different CS definitions. Resulting kinematics and kinetics were obtained to quantify the 1) reduction in intra-knee kinematic response variation, 2) reduction in kinematic cross-talk, 3) reduction in inter-knee kinematic response variation, and 4) improvement in force control performance, when using Functional CS compared to Anatomical. Functional CS, compared to Anatomical, 1) significantly reduced intra-knee kinematic response variation across 12 combined loading conditions for nearly all DOF, 2) significantly reduced kinematic cross-talk during anterior-posterior, varus-valgus and internal-external rotation laxity testing across many DOF, 3) significantly reduced inter-knee kinematic response variation for all DOFs over a gait profile and combined loading conditions, and 4) significantly improved Anterior-Posterior and Varus-Valgus force/torque control performance during dynamic loading profiles. The advantage of using Functional CS for in vitro testing has been demonstrated across all considered domains. Functional CS should be used when performing in vitro knee joint testing.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-32"},"PeriodicalIF":1.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-Based Estimation of Left Ventricular Myocardial Stiffness. 基于图像的左心室心肌僵硬度估计
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2025-01-01 DOI: 10.1115/1.4066525
Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale

Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction. We demonstrate our protocol in both a preclinical and clinical setting, with representative findings that suggest sensitivity and translational feasibility of obtained estimates.

左心室心肌僵硬度升高是重塑介导的关键变化,是心力衰竭发生和发展的基础。尽管量化这种决定性变化具有潜在的诊断价值,但目前缺乏可随时应用于临床实践的辅助技术。为了满足这一尚未满足的临床需求,我们提出了一种简单的方案,用于处理常规超声心动图成像数据,以提供左心室心肌僵硬度指数,并为射血分数保留的高危心衰患者提供方案规范。我们在临床前和临床环境中演示了我们的方案,具有代表性的研究结果表明了所获得估计值的灵敏度和转化可行性。
{"title":"Image-Based Estimation of Left Ventricular Myocardial Stiffness.","authors":"Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale","doi":"10.1115/1.4066525","DOIUrl":"10.1115/1.4066525","url":null,"abstract":"<p><p>Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction. We demonstrate our protocol in both a preclinical and clinical setting, with representative findings that suggest sensitivity and translational feasibility of obtained estimates.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
We Will, We Will Shock You: Adaptive Versus Conventional Functional Electrical Stimulation in Individuals Post-Stroke. 我们会,我们会让你震惊:中风后患者的自适应功能性电刺激与传统功能性电刺激。
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066419
Margo C Donlin, Jill S Higginson

Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to address decreased walking speed, foot drop, and decreased forward propulsion. However, not all individuals experience clinically meaningful improvements in gait function with stimulation. Previous research has developed adaptive functional electrical stimulation (AFES) systems that adjust stimulation timing and amplitude at every stride to deliver optimal stimulation. The purpose of this work was to determine the effects of a novel AFES system on functional gait outcomes and compare them to the effects of the existing FES system. Twenty-four individuals with chronic poststroke hemiparesis completed 64-min walking trials on an adaptive and fixed-speed treadmill with no stimulation, stimulation from the existing FES system, and stimulation from the AFES system. There was no significant effect of stimulation condition on walking speed, peak dorsiflexion angle, or peak propulsive force. Walking speed was significantly faster and peak propulsive force was significantly larger on the adaptive treadmill (ATM) than the fixed-speed treadmill (both p < 0.0001). Dorsiflexor stimulation timing was similar between stimulation conditions, but plantarflexor stimulation timing was significantly improved with the AFES system compared to the FES system (p = 0.0059). Variability between and within subjects was substantial, and some subjects experienced clinically meaningful improvements in walking speed, peak dorsiflexion angle, and peak propulsive force. However, not all subjects experienced benefits, suggesting that further research to characterize which subjects exhibit the best instantaneous response to FES is needed to optimize poststroke gait rehabilitation using FES.

功能性电刺激(FES)通常用于中风后步态康复,以解决步行速度下降、足下垂和向前推进力减弱等问题。然而,并非所有患者在接受刺激后都能获得有临床意义的步态功能改善。此前的研究已经开发出了自适应功能性电刺激(AFES)系统,该系统可在每一步中调整刺激时机和振幅,以提供最佳刺激。这项研究旨在确定新型 AFES 系统对功能性步态结果的影响,并将其与现有 FES 系统的影响进行比较。二十四名中风后慢性偏瘫患者在自适应固定速度跑步机上完成了六次四分钟步行试验,分别在无刺激、现有 FES 系统刺激和 AFES 系统刺激下进行。刺激条件对步行速度、峰值背屈角度或峰值推进力没有明显影响。与固定速度跑步机相比,自适应跑步机的行走速度明显更快,峰值推进力明显更大(p 均小于 0.0001)。不同刺激条件下的背屈刺激时机相似,但与 FES 系统相比,AFES 系统的跖屈刺激时机明显改善(p = 0.0059)。受试者之间和受试者内部的差异很大,一些受试者在行走速度、背屈角峰值和推进力峰值方面获得了有临床意义的改善。然而,并非所有受试者都能从中受益,这表明需要进一步研究哪些受试者对 FES 表现出最佳的瞬时反应,以优化使用 FES 的中风后步态康复。
{"title":"We Will, We Will Shock You: Adaptive Versus Conventional Functional Electrical Stimulation in Individuals Post-Stroke.","authors":"Margo C Donlin, Jill S Higginson","doi":"10.1115/1.4066419","DOIUrl":"10.1115/1.4066419","url":null,"abstract":"<p><p>Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to address decreased walking speed, foot drop, and decreased forward propulsion. However, not all individuals experience clinically meaningful improvements in gait function with stimulation. Previous research has developed adaptive functional electrical stimulation (AFES) systems that adjust stimulation timing and amplitude at every stride to deliver optimal stimulation. The purpose of this work was to determine the effects of a novel AFES system on functional gait outcomes and compare them to the effects of the existing FES system. Twenty-four individuals with chronic poststroke hemiparesis completed 64-min walking trials on an adaptive and fixed-speed treadmill with no stimulation, stimulation from the existing FES system, and stimulation from the AFES system. There was no significant effect of stimulation condition on walking speed, peak dorsiflexion angle, or peak propulsive force. Walking speed was significantly faster and peak propulsive force was significantly larger on the adaptive treadmill (ATM) than the fixed-speed treadmill (both p < 0.0001). Dorsiflexor stimulation timing was similar between stimulation conditions, but plantarflexor stimulation timing was significantly improved with the AFES system compared to the FES system (p = 0.0059). Variability between and within subjects was substantial, and some subjects experienced clinically meaningful improvements in walking speed, peak dorsiflexion angle, and peak propulsive force. However, not all subjects experienced benefits, suggesting that further research to characterize which subjects exhibit the best instantaneous response to FES is needed to optimize poststroke gait rehabilitation using FES.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. 管周牙本质和管间牙本质界面裂缝穿透和变形的数值研究
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066286
Min Xu, Zhangying Xu, Bingbing An

Dentin is a biological composite exhibiting multilevel hierarchical structure, which confers excellent damage tolerance to this tissue. Despite the progress in characterization of fracture behavior of dentin, the contribution of composite structure consisting of peritubular dentin (PTD), intertubular dentin (ITD) and tubules to fracture resistance remains elusive. In this study, calculations are carried out for energy release rate associated with crack propagation in the microstructure of dentin. Crack penetration and deflection at the PTD-ITD interface are accounted for in the numerical analyses. It is found that high stiffness of the PTD plays a role in increasing crack driving force, promoting crack growth in the microstructure of dentin. For crack penetration across the PTD-ITD interface, the crack driving force increases with increasing tubule radius; and thick PTD generates amplified crack driving force, thereby leading to weak fracture resistance. The driving force for crack deflection increases with the increase in tubule radius in the case of short cracks, while for long cracks, there is a decrease in driving force with increasing tubule radius. Furthermore, we show that the competition between crack penetration and deflection at the PTD-ITD interface is controlled by the ratio of PTD to ITD elastic modulus, tubule radius and thickness of PTD. High PTD stiffness can increase the propensity of crack deflection. The microstructure of dentin with large tubule radius favors crack deflection and thick PTD is beneficial for crack penetration.

牙本质是一种生物复合材料,表现出多层次的分层结构,使该组织具有极佳的耐损伤性。尽管在描述牙本质的断裂行为方面取得了进展,但由管周牙本质 (PTD)、管间牙本质 (ITD) 和小管组成的复合结构对断裂抗力的贡献仍然难以确定。本研究对牙本质微观结构中与裂纹扩展相关的能量释放率进行了计算。在数值分析中考虑了 PTD-ITD 界面的裂纹穿透和变形。结果发现,PTD 的高刚度会增加裂纹驱动力,促进牙本质微观结构中的裂纹生长。对于穿过 PTD-ITD 界面的裂纹穿透,裂纹驱动力随着小管半径的增加而增加;厚 PTD 产生的裂纹驱动力被放大,从而导致抗断裂性减弱。对于短裂纹,裂纹挠曲驱动力随小管半径的增大而增大,而对于长裂纹,驱动力则随小管半径的增大而减小。此外,我们还发现 PTD-ITD 界面上裂纹穿透与挠曲之间的竞争受 PTD 与 ITD 弹性模量之比、小管半径和 PTD 厚度的控制。PTD 刚度高会增加裂纹偏转的倾向。小管半径大的牙本质微观结构有利于裂纹偏转,厚的 PTD 有利于裂纹穿透。
{"title":"A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin.","authors":"Min Xu, Zhangying Xu, Bingbing An","doi":"10.1115/1.4066286","DOIUrl":"10.1115/1.4066286","url":null,"abstract":"<p><p>Dentin is a biological composite exhibiting multilevel hierarchical structure, which confers excellent damage tolerance to this tissue. Despite the progress in characterization of fracture behavior of dentin, the contribution of composite structure consisting of peritubular dentin (PTD), intertubular dentin (ITD) and tubules to fracture resistance remains elusive. In this study, calculations are carried out for energy release rate associated with crack propagation in the microstructure of dentin. Crack penetration and deflection at the PTD-ITD interface are accounted for in the numerical analyses. It is found that high stiffness of the PTD plays a role in increasing crack driving force, promoting crack growth in the microstructure of dentin. For crack penetration across the PTD-ITD interface, the crack driving force increases with increasing tubule radius; and thick PTD generates amplified crack driving force, thereby leading to weak fracture resistance. The driving force for crack deflection increases with the increase in tubule radius in the case of short cracks, while for long cracks, there is a decrease in driving force with increasing tubule radius. Furthermore, we show that the competition between crack penetration and deflection at the PTD-ITD interface is controlled by the ratio of PTD to ITD elastic modulus, tubule radius and thickness of PTD. High PTD stiffness can increase the propensity of crack deflection. The microstructure of dentin with large tubule radius favors crack deflection and thick PTD is beneficial for crack penetration.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating the Growth of TATA-Box Binding Protein-Associated Factor 15 Inclusions in Neuron Soma. 模拟神经元索质中 TAF15 包涵体的生长
IF 1.7 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-12-01 DOI: 10.1115/1.4066386
Andrey V Kuznetsov

To the best of the author's knowledge, this paper presents the first attempt to develop a mathematical model of the formation and growth of inclusions containing misfolded TATA-box binding protein associated factor 15 (TAF15). It has recently been shown that TAF15 inclusions are involved in approximately 10% of cases of frontotemporal lobar degeneration (FTLD). FTLD is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of personality, behavioral changes, and a decline in language skills due to the degeneration of the frontal and anterior temporal lobes. The model simulates TAF15 monomer production, nucleation and autocatalytic growth of free TAF15 aggregates, and their deposition into TAF15 inclusions. The accuracy of the numerical solution of the model equations is validated by comparing it with analytical solutions available for limiting cases. Physiologically relevant parameter values were used to predict TAF15 inclusion growth. It is shown that the growth of TAF15 inclusions is influenced by two opposing mechanisms: the rate at which free TAF15 aggregates are deposited into inclusions and the rate of autocatalytic production of free TAF15 aggregates from monomers. A low deposition rate slows inclusion growth, while a high deposition rate hinders the autocatalytic production of new aggregates, thus also slowing inclusion growth. Consequently, the rate of inclusion growth is maximized at an intermediate deposition rate of free TAF15 aggregates into TAF15 inclusions.

据作者所知,本文首次尝试建立了一个数学模型,用于分析含有折叠错误的 TATA-box 结合蛋白相关因子 15(TAF15)的包涵体的形成和生长。最近的研究表明,大约 10%的额颞叶变性(FTLD)病例涉及 TAF15 包涵体。额颞叶变性是仅次于阿尔茨海默病(AD)的第二大常见神经退行性疾病。由于额叶和颞叶前部退化,该病的特征是人格逐渐丧失、行为改变和语言能力下降。该模型模拟了 TAF15 单体的产生、自由 TAF15 聚集体的成核和自催化生长,以及它们沉积成 TAF15 包涵体的过程。通过将模型方程的数值解与极限情况下的分析解进行比较,验证了模型方程数值解的准确性。使用与生理相关的参数值来预测 TAF15 包裹体的生长。结果表明,TAF15 包涵体的生长受两种相反机制的影响:游离 TAF15 聚集体沉积到包涵体中的速率和单体自催化产生游离 TAF15 聚集体的速率。低沉积率会减缓包涵体的生长,而高沉积率会阻碍新聚集体的自动催化生成,从而也会减缓包涵体的生长。因此,当游离 TAF15 聚集体在 TAF15 包涵体中的沉积速率处于中间状态时,包涵体的生长速率最大。
{"title":"Simulating the Growth of TATA-Box Binding Protein-Associated Factor 15 Inclusions in Neuron Soma.","authors":"Andrey V Kuznetsov","doi":"10.1115/1.4066386","DOIUrl":"10.1115/1.4066386","url":null,"abstract":"<p><p>To the best of the author's knowledge, this paper presents the first attempt to develop a mathematical model of the formation and growth of inclusions containing misfolded TATA-box binding protein associated factor 15 (TAF15). It has recently been shown that TAF15 inclusions are involved in approximately 10% of cases of frontotemporal lobar degeneration (FTLD). FTLD is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of personality, behavioral changes, and a decline in language skills due to the degeneration of the frontal and anterior temporal lobes. The model simulates TAF15 monomer production, nucleation and autocatalytic growth of free TAF15 aggregates, and their deposition into TAF15 inclusions. The accuracy of the numerical solution of the model equations is validated by comparing it with analytical solutions available for limiting cases. Physiologically relevant parameter values were used to predict TAF15 inclusion growth. It is shown that the growth of TAF15 inclusions is influenced by two opposing mechanisms: the rate at which free TAF15 aggregates are deposited into inclusions and the rate of autocatalytic production of free TAF15 aggregates from monomers. A low deposition rate slows inclusion growth, while a high deposition rate hinders the autocatalytic production of new aggregates, thus also slowing inclusion growth. Consequently, the rate of inclusion growth is maximized at an intermediate deposition rate of free TAF15 aggregates into TAF15 inclusions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomechanical Engineering-Transactions of the Asme
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1