Ke Liu, Zhaolin Yao, Li Zheng, Qingguo Wei, Weihua Pei, Xiaorong Gao, Yijun Wang
{"title":"A high-frequency SSVEP-BCI system based on a 360 Hz refresh rate.","authors":"Ke Liu, Zhaolin Yao, Li Zheng, Qingguo Wei, Weihua Pei, Xiaorong Gao, Yijun Wang","doi":"10.1088/1741-2552/acf242","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) often struggle to balance user experience and system performance. To address this challenge, this study employed stimuli in the 55-62.8 Hz frequency range to implement a 40-target BCI speller that offered both high-performance and user-friendliness.<i>Approach</i>. This study proposed a method that presents stable multi-target stimuli on a monitor with a 360 Hz refresh rate. Real-time generation of stimulus matrix and stimulus rendering was used to ensure stable presentation while reducing the computational load. The 40 targets were encoded using the joint frequency and phase modulation method, offline and online BCI experiments were conducted on 16 subjects using the task discriminant component analysis algorithm for feature extraction and classification.<i>Main results</i>. The online BCI system achieved an average accuracy of 88.87% ± 3.05% and an information transfer rate of 51.83 ± 2.77 bits min<sup>-1</sup>under the low flickering perception condition.<i>Significance</i>. These findings suggest the feasibility and significant practical value of the proposed high-frequency SSVEP BCI system in advancing the visual BCI technology.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Steady-state visual evoked potential (SSVEP) based brain-computer interfaces (BCIs) often struggle to balance user experience and system performance. To address this challenge, this study employed stimuli in the 55-62.8 Hz frequency range to implement a 40-target BCI speller that offered both high-performance and user-friendliness.Approach. This study proposed a method that presents stable multi-target stimuli on a monitor with a 360 Hz refresh rate. Real-time generation of stimulus matrix and stimulus rendering was used to ensure stable presentation while reducing the computational load. The 40 targets were encoded using the joint frequency and phase modulation method, offline and online BCI experiments were conducted on 16 subjects using the task discriminant component analysis algorithm for feature extraction and classification.Main results. The online BCI system achieved an average accuracy of 88.87% ± 3.05% and an information transfer rate of 51.83 ± 2.77 bits min-1under the low flickering perception condition.Significance. These findings suggest the feasibility and significant practical value of the proposed high-frequency SSVEP BCI system in advancing the visual BCI technology.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.