{"title":"PDMS/CNT electrodes with bioamplifier for practical in-the-ear and conventional biosignal recordings.","authors":"Jongsook Sanguantrakul,Apit Hemakom,Tharapong Soonrach,Pasin Israsena","doi":"10.1088/1741-2552/ad7905","DOIUrl":null,"url":null,"abstract":"Potential usage of dry electrodes in emerging applications such as wearable devices, flexible tattoo circuits, and stretchable displays requires that, to become practical solutions, issues such as easy fabrication, strong durability, and low-cost materials must be addressed. The objective of this study was to propose soft and dry electrodes developed from polydimethylsiloxane (PDMS) and carbon nanotube (CNT) composites. Connected with both conventional and in-house NTAmp biosignal instruments for comparative studies, performances of the proposed dry electrodes were evaluated through electromyogram (EMG), electrocardiogram (ECG), and electroencephalogram (EEG) measurements. Results demonstrated that the capability of the PDMS/CNT electrodes to receive biosignals was on par with that of commercial electrodes (adhesive and gold-cup electrodes). Depending on the type of stimuli, a signal-to-noise ratio (SNR) of 5-10 dB range was achieved. The results of the study show that the performance of the proposed dry electrode is comparable to that of commercial electrodes, offering possibilities for diverse applications. These applications may include the physical examination of vital medical signs, the control of intelligent devices and robots, and the transmission of signals through flexible materials.","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"53 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad7905","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Potential usage of dry electrodes in emerging applications such as wearable devices, flexible tattoo circuits, and stretchable displays requires that, to become practical solutions, issues such as easy fabrication, strong durability, and low-cost materials must be addressed. The objective of this study was to propose soft and dry electrodes developed from polydimethylsiloxane (PDMS) and carbon nanotube (CNT) composites. Connected with both conventional and in-house NTAmp biosignal instruments for comparative studies, performances of the proposed dry electrodes were evaluated through electromyogram (EMG), electrocardiogram (ECG), and electroencephalogram (EEG) measurements. Results demonstrated that the capability of the PDMS/CNT electrodes to receive biosignals was on par with that of commercial electrodes (adhesive and gold-cup electrodes). Depending on the type of stimuli, a signal-to-noise ratio (SNR) of 5-10 dB range was achieved. The results of the study show that the performance of the proposed dry electrode is comparable to that of commercial electrodes, offering possibilities for diverse applications. These applications may include the physical examination of vital medical signs, the control of intelligent devices and robots, and the transmission of signals through flexible materials.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.