Ankit Arora, Jan Eric Kolberg, Smitha Srinivasachar Badarinarayan, Natalia Savytska, Daksha Munot, Martin Müller, Veronika Krchlíková, Daniel Sauter, Vikas Bansal
{"title":"SARS-CoV-2 infection induces epigenetic changes in the LTR69 subfamily of endogenous retroviruses.","authors":"Ankit Arora, Jan Eric Kolberg, Smitha Srinivasachar Badarinarayan, Natalia Savytska, Daksha Munot, Martin Müller, Veronika Krchlíková, Daniel Sauter, Vikas Bansal","doi":"10.1186/s13100-023-00299-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accumulating evidence suggests that endogenous retroviruses (ERVs) play an important role in the host response to infection and the development of disease. By analyzing ChIP-sequencing data sets, we show that SARS-CoV-2 infection induces H3K27 acetylation of several loci within the LTR69 subfamily of ERVs. Using functional assays, we identified one SARS-CoV-2-activated LTR69 locus, termed Dup69, which exhibits regulatory activity and is responsive to the transcription factors IRF3 and p65/RELA. LTR69_Dup69 is located about 500 bp upstream of a long non-coding RNA gene (ENSG00000289418) and within the PTPRN2 gene encoding a diabetes-associated autoantigen. Both ENSG00000289418 and PTPRN2 showed a significant increase in expression upon SARS-CoV-2 infection. Thus, our study sheds light on the interplay of exogenous with endogenous viruses and helps to understand how ERVs regulate gene expression during infection.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"14 1","pages":"11"},"PeriodicalIF":4.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-023-00299-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Accumulating evidence suggests that endogenous retroviruses (ERVs) play an important role in the host response to infection and the development of disease. By analyzing ChIP-sequencing data sets, we show that SARS-CoV-2 infection induces H3K27 acetylation of several loci within the LTR69 subfamily of ERVs. Using functional assays, we identified one SARS-CoV-2-activated LTR69 locus, termed Dup69, which exhibits regulatory activity and is responsive to the transcription factors IRF3 and p65/RELA. LTR69_Dup69 is located about 500 bp upstream of a long non-coding RNA gene (ENSG00000289418) and within the PTPRN2 gene encoding a diabetes-associated autoantigen. Both ENSG00000289418 and PTPRN2 showed a significant increase in expression upon SARS-CoV-2 infection. Thus, our study sheds light on the interplay of exogenous with endogenous viruses and helps to understand how ERVs regulate gene expression during infection.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.