In situ activation of flexible magnetoelectric membrane enhances bone defect repair.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2023-07-10 DOI:10.1038/s41467-023-39744-3
Wenwen Liu, Han Zhao, Chenguang Zhang, Shiqi Xu, Fengyi Zhang, Ling Wei, Fangyu Zhu, Ying Chen, Yumin Chen, Ying Huang, Mingming Xu, Ying He, Boon Chin Heng, Jinxing Zhang, Yang Shen, Xuehui Zhang, Houbing Huang, Lili Chen, Xuliang Deng
{"title":"In situ activation of flexible magnetoelectric membrane enhances bone defect repair.","authors":"Wenwen Liu,&nbsp;Han Zhao,&nbsp;Chenguang Zhang,&nbsp;Shiqi Xu,&nbsp;Fengyi Zhang,&nbsp;Ling Wei,&nbsp;Fangyu Zhu,&nbsp;Ying Chen,&nbsp;Yumin Chen,&nbsp;Ying Huang,&nbsp;Mingming Xu,&nbsp;Ying He,&nbsp;Boon Chin Heng,&nbsp;Jinxing Zhang,&nbsp;Yang Shen,&nbsp;Xuehui Zhang,&nbsp;Houbing Huang,&nbsp;Lili Chen,&nbsp;Xuliang Deng","doi":"10.1038/s41467-023-39744-3","DOIUrl":null,"url":null,"abstract":"<p><p>For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe<sub>2</sub>O<sub>4</sub>@BaTiO<sub>3</sub>/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe<sub>2</sub>O<sub>4</sub> core can increase charge density on the BaTiO<sub>3</sub> shell and strengthens the β-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"4091"},"PeriodicalIF":14.7000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333320/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-023-39744-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the β-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位激活柔性磁电膜增强骨缺损修复。
对于合并症条件下的骨缺损修复,使用可无创调节的生物材料是非常可取的,以避免进一步的并发症并促进成骨。然而,在临床应用中,利用刺激反应性材料实现有效的成骨仍然是一个巨大的挑战。在这里,我们开发了极化CoFe2O4@BaTiO3/聚偏氟乙烯(VDF-TrFE) [P(VDF-TrFE)]核壳颗粒结合的复合膜,具有高磁电转换效率,用于激活骨再生。在CoFe2O4磁芯上施加外磁场力可以增加BaTiO3壳层上的电荷密度,增强P(VDF-TrFE)基体的β-相变。这种能量转换增加了膜表面电位,从而激活了成骨。对雄性大鼠颅骨缺损的实验表明,即使在地塞米松或脂多糖诱导的炎症引起成骨抑制的情况下,反复在膜上施加磁场也能增强骨缺损的修复。本研究提供了一种利用刺激响应磁电膜有效激活原位成骨的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis Broadscale dampening of uncertainty adjustment in the aging brain An efficient multi-gram access in a two-step synthesis to soluble, nine-atomic, silylated silicon clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1