Explorative Synthetic Biology in AI: Criteria of Relevance and a Taxonomy for Synthetic Models of Living and Cognitive Processes

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2023-08-01 DOI:10.1162/artl_a_00411
Luisa Damiano;Pasquale Stano
{"title":"Explorative Synthetic Biology in AI: Criteria of Relevance and a Taxonomy for Synthetic Models of Living and Cognitive Processes","authors":"Luisa Damiano;Pasquale Stano","doi":"10.1162/artl_a_00411","DOIUrl":null,"url":null,"abstract":"This article tackles the topic of the special issue “Biology in AI: New Frontiers in Hardware, Software and Wetware Modeling of Cognition” in two ways. It addresses the problem of the relevance of hardware, software, and wetware models for the scientific understanding of biological cognition, and it clarifies the contributions that synthetic biology, construed as the synthetic exploration of cognition, can offer to artificial intelligence (AI). The research work proposed in this article is based on the idea that the relevance of hardware, software, and wetware models of biological and cognitive processes—that is, the concrete contribution that these models can make to the scientific understanding of life and cognition—is still unclear, mainly because of the lack of explicit criteria to assess in what ways synthetic models can support the experimental exploration of biological and cognitive phenomena. Our article draws on elements from cybernetic and autopoietic epistemology to define a framework of reference, for the synthetic study of life and cognition, capable of generating a set of assessment criteria and a classification of forms of relevance, for synthetic models, able to overcome the sterile, traditional polarization of their evaluation between mere imitation and full reproduction of the target processes. On the basis of these tools, we tentatively map the forms of relevance characterizing wetware models of living and cognitive processes that synthetic biology can produce and outline a programmatic direction for the development of “organizationally relevant approaches” applying synthetic biology techniques to the investigative field of (embodied) AI.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"29 3","pages":"367-387"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10302132/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

This article tackles the topic of the special issue “Biology in AI: New Frontiers in Hardware, Software and Wetware Modeling of Cognition” in two ways. It addresses the problem of the relevance of hardware, software, and wetware models for the scientific understanding of biological cognition, and it clarifies the contributions that synthetic biology, construed as the synthetic exploration of cognition, can offer to artificial intelligence (AI). The research work proposed in this article is based on the idea that the relevance of hardware, software, and wetware models of biological and cognitive processes—that is, the concrete contribution that these models can make to the scientific understanding of life and cognition—is still unclear, mainly because of the lack of explicit criteria to assess in what ways synthetic models can support the experimental exploration of biological and cognitive phenomena. Our article draws on elements from cybernetic and autopoietic epistemology to define a framework of reference, for the synthetic study of life and cognition, capable of generating a set of assessment criteria and a classification of forms of relevance, for synthetic models, able to overcome the sterile, traditional polarization of their evaluation between mere imitation and full reproduction of the target processes. On the basis of these tools, we tentatively map the forms of relevance characterizing wetware models of living and cognitive processes that synthetic biology can produce and outline a programmatic direction for the development of “organizationally relevant approaches” applying synthetic biology techniques to the investigative field of (embodied) AI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能中的探索性合成生物学:生命和认知过程合成模型的相关标准和分类
本文从两方面探讨了特刊“人工智能中的生物学:认知的硬件、软件和软件建模的新领域”的主题。它解决了硬件、软件和湿软件模型对科学理解生物认知的相关性问题,并阐明了合成生物学(被解释为对认知的综合探索)可以为人工智能(AI)提供的贡献。本文提出的研究工作是基于这样一种观点,即生物和认知过程的硬件、软件和湿软件模型的相关性——也就是说,这些模型对科学理解生命和认知的具体贡献——仍然不清楚,主要是因为缺乏明确的标准来评估合成模型以何种方式支持生物和认知现象的实验探索。我们的文章借鉴了控制论和自创生认识论的元素,为生命和认知的综合研究定义了一个参考框架,能够产生一套评估标准和相关形式的分类,为综合模型,能够克服在纯粹模仿和目标过程的完全复制之间进行评估的无菌的传统两极分化。在这些工具的基础上,我们初步绘制了合成生物学可以产生的表征生命和认知过程的湿软件模型的相关形式,并概述了将合成生物学技术应用于(具体化)人工智能调查领域的“组织相关方法”的发展规划方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1