首页 > 最新文献

Artificial Life最新文献

英文 中文
Complexity, Artificial Life, and Artificial Intelligence. 复杂性、人工生命和人工智能。
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-22 DOI: 10.1162/artl_a_00462
Carlos Gershenson

The scientific fields of complexity, Artificial Life (ALife), and artificial intelligence (AI) share commonalities: historic, conceptual, methodological, and philosophical. Although their origins trace back to the 1940s birth of cybernetics, they were able to develop properly only as modern information technology became available. In this perspective, I offer a personal (and thus biased) account of the expectations and limitations of these fields, some of which have their roots in the limits of formal systems. I use interactions, self-organization, emergence, and balance to compare different aspects of complexity, ALife, and AI. Even when the trajectory of the article is influenced by my personal experience, the general questions posed (which outweigh the answers) will, I hope, be useful in aligning efforts in these fields toward overcoming-or accepting-their limits.

复杂性、人工生命(ALife)和人工智能(AI)等科学领域在历史、概念、方法论和哲学上都有共同之处。虽然它们的起源可以追溯到 20 世纪 40 年代控制论的诞生,但只有在现代信息技术普及之后,它们才得以正常发展。在这一视角中,我对这些领域的期望和局限性进行了个人化(因此有失偏颇)的阐述,其中一些期望和局限性源于形式系统的局限性。我用相互作用、自组织、涌现和平衡来比较复杂性、ALife 和人工智能的不同方面。即使文章的轨迹受到我个人经历的影响,但我希望所提出的一般性问题(这些问题比答案更重要)将有助于协调这些领域的努力,克服或接受它们的局限性。
{"title":"Complexity, Artificial Life, and Artificial Intelligence.","authors":"Carlos Gershenson","doi":"10.1162/artl_a_00462","DOIUrl":"https://doi.org/10.1162/artl_a_00462","url":null,"abstract":"<p><p>The scientific fields of complexity, Artificial Life (ALife), and artificial intelligence (AI) share commonalities: historic, conceptual, methodological, and philosophical. Although their origins trace back to the 1940s birth of cybernetics, they were able to develop properly only as modern information technology became available. In this perspective, I offer a personal (and thus biased) account of the expectations and limitations of these fields, some of which have their roots in the limits of formal systems. I use interactions, self-organization, emergence, and balance to compare different aspects of complexity, ALife, and AI. Even when the trajectory of the article is influenced by my personal experience, the general questions posed (which outweigh the answers) will, I hope, be useful in aligning efforts in these fields toward overcoming-or accepting-their limits.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-15"},"PeriodicalIF":1.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurons as Autoencoders. 作为自动编码器的神经元
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-13 DOI: 10.1162/artl_c_00461
Larry Bull

This letter presents the idea that neural backpropagation is exploiting dendritic processing to enable individual neurons to perform autoencoding. Using a very simple connection weight search heuristic and artificial neural network model, the effects of interleaving autoencoding for each neuron in a hidden layer of a feedforward network are explored. This is contrasted with the equivalent standard layered approach to autoencoding. It is shown that such individualized processing is not detrimental and can improve network learning.

这封信提出了神经反向传播利用树突处理使单个神经元进行自动编码的观点。通过使用非常简单的连接权重搜索启发式和人工神经网络模型,探讨了前馈网络隐藏层中每个神经元交错自动编码的效果。这与自动编码的等效标准分层方法进行了对比。结果表明,这种个性化处理并不有害,而且可以改善网络学习。
{"title":"Neurons as Autoencoders.","authors":"Larry Bull","doi":"10.1162/artl_c_00461","DOIUrl":"https://doi.org/10.1162/artl_c_00461","url":null,"abstract":"<p><p>This letter presents the idea that neural backpropagation is exploiting dendritic processing to enable individual neurons to perform autoencoding. Using a very simple connection weight search heuristic and artificial neural network model, the effects of interleaving autoencoding for each neuron in a hidden layer of a feedforward network are explored. This is contrasted with the equivalent standard layered approach to autoencoding. It is shown that such individualized processing is not detrimental and can improve network learning.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-6"},"PeriodicalIF":1.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. 大型复杂结构人工开发中的可进化性和末端加法原理。
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-31 DOI: 10.1162/artl_a_00460
Alessandro Fontana, Borys Wróbel

Epigenetic tracking (ET) is a model of development that is capable of generating diverse, arbitrary, complex three-dimensional cellular structures starting from a single cell. The generated structures have a level of complexity (in terms of the number of cells) comparable to multicellular biological organisms. In this article, we investigate the evolvability of the development of a complex structure inspired by the "French flag" problem: an "Italian Anubis" (a three-dimensional, doglike figure patterned in three colors). Genes during development are triggered in ET at specific developmental stages, and the fitness of individuals during simulated evolution is calculated after a certain stage. When this evaluation stage was allowed to evolve, genes that were triggered at later stages of development tended to be incorporated into the genome later during evolutionary runs. This suggests the emergence of the property of terminal addition in this system. When the principle of terminal addition was explicitly incorporated into ET, and was the sole mechanism for introducing morphological innovation, evolvability improved markedly, leading to the development of structures much more closely approximating the target at a much lower computational cost.

表观遗传追踪(ET)是一种发育模型,能够从单细胞开始生成多样、任意、复杂的三维细胞结构。生成结构的复杂程度(就细胞数量而言)可与多细胞生物体相媲美。在这篇文章中,我们研究了受 "法国国旗 "问题启发的一种复杂结构:"意大利阿努比斯"(一种三维的、以三种颜色为图案的狗状图形)的可演化性。发育过程中的基因在特定的发育阶段会在 ET 中被触发,模拟进化过程中个体的适应性会在某个阶段后被计算出来。当这一评估阶段被允许进化时,在发育后期被触发的基因往往会在进化运行的后期被纳入基因组。这表明在该系统中出现了末端加法的特性。当末端添加原则被明确纳入 ET,并成为引入形态创新的唯一机制时,进化性显著提高,从而以更低的计算成本开发出更接近目标的结构。
{"title":"Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition.","authors":"Alessandro Fontana, Borys Wróbel","doi":"10.1162/artl_a_00460","DOIUrl":"https://doi.org/10.1162/artl_a_00460","url":null,"abstract":"<p><p>Epigenetic tracking (ET) is a model of development that is capable of generating diverse, arbitrary, complex three-dimensional cellular structures starting from a single cell. The generated structures have a level of complexity (in terms of the number of cells) comparable to multicellular biological organisms. In this article, we investigate the evolvability of the development of a complex structure inspired by the \"French flag\" problem: an \"Italian Anubis\" (a three-dimensional, doglike figure patterned in three colors). Genes during development are triggered in ET at specific developmental stages, and the fitness of individuals during simulated evolution is calculated after a certain stage. When this evaluation stage was allowed to evolve, genes that were triggered at later stages of development tended to be incorporated into the genome later during evolutionary runs. This suggests the emergence of the property of terminal addition in this system. When the principle of terminal addition was explicitly incorporated into ET, and was the sole mechanism for introducing morphological innovation, evolvability improved markedly, leading to the development of structures much more closely approximating the target at a much lower computational cost.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-13"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent. 网络瓶颈和任务结构控制着觅食机器人可解释学习规则的演化
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-31 DOI: 10.1162/artl_a_00458
Emmanouil Giannakakis, Sina Khajehabdollahi, Anna Levina

Developing reliable mechanisms for continuous local learning is a central challenge faced by biological and artificial systems. Yet, how the environmental factors and structural constraints on the learning network influence the optimal plasticity mechanisms remains obscure even for simple settings. To elucidate these dependencies, we study meta-learning via evolutionary optimization of simple reward-modulated plasticity rules in embodied agents solving a foraging task. We show that unconstrained meta-learning leads to the emergence of diverse plasticity rules. However, regularization and bottlenecks in the model help reduce this variability, resulting in interpretable rules. Our findings indicate that the meta-learning of plasticity rules is very sensitive to various parameters, with this sensitivity possibly reflected in the learning rules found in biological networks. When included in models, these dependencies can be used to discover potential objective functions and details of biological learning via comparisons with experimental observations.

开发可靠的持续局部学习机制是生物和人工系统面临的核心挑战。然而,环境因素和学习网络的结构限制如何影响最佳可塑性机制,即使是在简单的环境中,也仍然是模糊不清的。为了阐明这些依赖关系,我们研究了在解决觅食任务的具身机器人中,通过进化优化简单奖励调制可塑性规则的元学习。我们的研究表明,无约束的元学习会导致多种可塑性规则的出现。然而,模型中的正则化和瓶颈有助于减少这种可变性,从而产生可解释的规则。我们的研究结果表明,可塑性规则的元学习对各种参数非常敏感,这种敏感性可能反映在生物网络的学习规则中。如果将这些依赖关系纳入模型,就可以通过与实验观察结果的比较,发现生物学习的潜在目标函数和细节。
{"title":"Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.","authors":"Emmanouil Giannakakis, Sina Khajehabdollahi, Anna Levina","doi":"10.1162/artl_a_00458","DOIUrl":"https://doi.org/10.1162/artl_a_00458","url":null,"abstract":"<p><p>Developing reliable mechanisms for continuous local learning is a central challenge faced by biological and artificial systems. Yet, how the environmental factors and structural constraints on the learning network influence the optimal plasticity mechanisms remains obscure even for simple settings. To elucidate these dependencies, we study meta-learning via evolutionary optimization of simple reward-modulated plasticity rules in embodied agents solving a foraging task. We show that unconstrained meta-learning leads to the emergence of diverse plasticity rules. However, regularization and bottlenecks in the model help reduce this variability, resulting in interpretable rules. Our findings indicate that the meta-learning of plasticity rules is very sensitive to various parameters, with this sensitivity possibly reflected in the learning rules found in biological networks. When included in models, these dependencies can be used to discover potential objective functions and details of biological learning via comparisons with experimental observations.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-18"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Limits of Familiarity-Based Navigation. 研究基于熟悉度的导航的局限性
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-31 DOI: 10.1162/artl_a_00459
Amany Azevedo Amin, Efstathios Kagioulis, Norbert Domcsek, Thomas Nowotny, Paul Graham, Andrew Philippides

Insect-inspired navigation strategies have the potential to unlock robotic navigation in power-constrained scenarios, as they can function effectively with limited computational resources. One such strategy, familiarity-based navigation, has successfully navigated a robot along routes of up to 60 m using a single-layer neural network trained with an Infomax learning rule. Given the small size of the network that effectively encodes the route, here we investigate the limits of this method, challenging it to navigate longer routes, investigating the relationship between performance, view acquisition rate and dimension, network size, and robustness to noise. Our goal is both to determine the parameters at which this method operates effectively and to explore the profile with which it fails, both to inform theories of insect navigation and to improve robotic deployments. We show that effective memorization of familiar views is possible for longer routes than previously attempted, but that this length decreases for reduced input view dimensions. We also show that the ideal view acquisition rate must be increased with route length for consistent performance. We further demonstrate that computational and memory savings may be made with equivalent performance by reducing the network size-an important consideration for applicability to small, lower-power robots-and investigate the profile of memory failure, demonstrating increased confusion across the route as it extends in length. In this extension to previous work, we also investigate the form taken by the network weights as training extends and the areas of the image on which visual familiarity-based navigation most relies. Additionally, we investigate the robustness of familiarity-based navigation to view variation caused by noise.

受昆虫启发的导航策略具有在动力受限的情况下开启机器人导航的潜力,因为它们可以在有限的计算资源下有效发挥作用。其中一种策略是基于熟悉度的导航,它利用用Infomax学习规则训练的单层神经网络,成功地沿着长达60米的路线为机器人导航。鉴于有效编码路线的网络规模较小,我们在此研究了这种方法的局限性,挑战它导航更长的路线,研究性能、视图获取率和维度、网络规模以及对噪声的鲁棒性之间的关系。我们的目标既是确定该方法有效运行的参数,也是探索其失败的概况,以便为昆虫导航理论提供信息,并改进机器人的部署。我们的研究表明,与之前的尝试相比,我们可以在更长的路线上有效记忆熟悉的视图,但当输入视图的维度减少时,记忆的长度也会减少。我们还证明,理想的视图获取率必须随着路线长度的增加而提高,才能获得一致的性能。我们进一步证明,通过减小网络规模(这是适用于小型、低功率机器人的一个重要考虑因素),可以在实现同等性能的情况下节省计算量和内存,并研究了内存失效的概况,证明随着路线长度的增加,整个路线的混乱程度也会增加。在对之前工作的扩展中,我们还研究了网络权重在训练过程中的形式,以及基于视觉熟悉度的导航最依赖的图像区域。此外,我们还研究了基于熟悉度的导航对噪声引起的视图变化的稳健性。
{"title":"Investigating the Limits of Familiarity-Based Navigation.","authors":"Amany Azevedo Amin, Efstathios Kagioulis, Norbert Domcsek, Thomas Nowotny, Paul Graham, Andrew Philippides","doi":"10.1162/artl_a_00459","DOIUrl":"https://doi.org/10.1162/artl_a_00459","url":null,"abstract":"<p><p>Insect-inspired navigation strategies have the potential to unlock robotic navigation in power-constrained scenarios, as they can function effectively with limited computational resources. One such strategy, familiarity-based navigation, has successfully navigated a robot along routes of up to 60 m using a single-layer neural network trained with an Infomax learning rule. Given the small size of the network that effectively encodes the route, here we investigate the limits of this method, challenging it to navigate longer routes, investigating the relationship between performance, view acquisition rate and dimension, network size, and robustness to noise. Our goal is both to determine the parameters at which this method operates effectively and to explore the profile with which it fails, both to inform theories of insect navigation and to improve robotic deployments. We show that effective memorization of familiar views is possible for longer routes than previously attempted, but that this length decreases for reduced input view dimensions. We also show that the ideal view acquisition rate must be increased with route length for consistent performance. We further demonstrate that computational and memory savings may be made with equivalent performance by reducing the network size-an important consideration for applicability to small, lower-power robots-and investigate the profile of memory failure, demonstrating increased confusion across the route as it extends in length. In this extension to previous work, we also investigate the form taken by the network weights as training extends and the areas of the image on which visual familiarity-based navigation most relies. Additionally, we investigate the robustness of familiarity-based navigation to view variation caused by noise.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-17"},"PeriodicalIF":1.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Recombination. 关于重组
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00453
Larry Bull

The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.

在减数分裂过程中进行染色体重组的主要解释是,这是一种修复机制或一种提高适应性的机制。然而,这两种解释都没有给繁殖生物本身带来明显的直接选择性优势。这封信再次提出了一个观点,即性的出现和维持是因为它能使一种简单的适应性景观平滑化,从而解释了重组进化的原因。虽然重组最初也包含在这一观点中,但与其他解释一样,并没有发现直接的益处。如果分裂的细胞在繁殖后的一段时间内形成一个简单的单倍体群落,那么就会产生益处,本文对此进行了探讨,结果表明这将进一步增加景观平滑过程的益处。
{"title":"On Recombination.","authors":"Larry Bull","doi":"10.1162/artl_a_00453","DOIUrl":"https://doi.org/10.1162/artl_a_00453","url":null,"abstract":"<p><p>The predominant explanations for including chromosomal recombination during meiosis are that it serves as a mechanism for repair or as a mechanism for increased adaptability. However, neither gives a clear immediate selective advantage to the reproducing organism itself. This letter revisits the idea that sex emerged and is maintained because it enables a simple form of fitness landscape smoothing to explain why recombination evolved. Although recombination was originally included in the idea, as with the other explanations, no immediate benefit was identified. That a benefit exists if the dividing cell(s) form a simple colony of the resulting haploids for some time after reproduction is explored here and shown to further increase the benefits of the landscape smoothing process.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-6"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(A)Life as It Could Be. (A)可能的生活。
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00455
Randall D Beer

On this 30th anniversary of the founding of the Artificial Life journal, I share some personal reflections on my own history of engagement with the field, my own particular assessment of its current status, and my vision for its future development. At the very least, I hope to stimulate some necessary critical conversations about the field of Artificial Life and where it is going.

值此《人工生命》杂志创刊 30 周年之际,我将与大家分享一些个人感想,包括我参与该领域的历史、我对该领域现状的具体评估以及我对该领域未来发展的愿景。至少,我希望能激发人们对人工生命领域及其发展方向进行一些必要的批判性对话。
{"title":"(A)Life as It Could Be.","authors":"Randall D Beer","doi":"10.1162/artl_a_00455","DOIUrl":"https://doi.org/10.1162/artl_a_00455","url":null,"abstract":"<p><p>On this 30th anniversary of the founding of the Artificial Life journal, I share some personal reflections on my own history of engagement with the field, my own particular assessment of its current status, and my vision for its future development. At the very least, I hope to stimulate some necessary critical conversations about the field of Artificial Life and where it is going.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-7"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comment on Randall D. Beer's "A(Life) as It Could Be". 评论 Randall D. Beer 的 "A(Life)as It Could Be"。
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00456
Inman Harvey
{"title":"Comment on Randall D. Beer's \"A(Life) as It Could Be\".","authors":"Inman Harvey","doi":"10.1162/artl_a_00456","DOIUrl":"https://doi.org/10.1162/artl_a_00456","url":null,"abstract":"","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-2"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Brains Perceive the World. 大脑如何感知世界
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00454
Christoph Adami

Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward "general intelligence" in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines.

机器会有知觉吗?它们能感知和感受事物,能意识到周围的环境吗?机器获得感知能力的前景如何?这种努力会带来哪些危险?在本专栏的系列文章中,我将讨论实现机器 "通用智能 "的一种可能途径:利用达尔文进化过程制造人工大脑,并将其嫁接到移动机器人平台上,从而实现完全具身的智能机器。
{"title":"How Brains Perceive the World.","authors":"Christoph Adami","doi":"10.1162/artl_a_00454","DOIUrl":"https://doi.org/10.1162/artl_a_00454","url":null,"abstract":"<p><p>Can machines ever be sentient? Could they perceive and feel things, be conscious of their surroundings? What are the prospects of achieving sentience in a machine? What are the dangers associated with such an endeavor, and is it even ethical to embark on such a path to begin with? In the series of articles of this column, I discuss one possible path toward \"general intelligence\" in machines: to use the process of Darwinian evolution to produce artificial brains that can be grafted onto mobile robotic platforms, with the goal of achieving fully embodied sentient machines.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-13"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata. 破坏性生境变化下种群的生存与进化适应:达尔文细胞自动机研究》。
IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-10-11 DOI: 10.1162/artl_a_00457
Hanna Derets, Chrystopher L Nehaniv

The evolution of living beings with continuous and consistent progress toward adaptation and ways to model evolution along principles as close as possible to Darwin's are important areas of focus in Artificial Life. Though genetic algorithms and evolutionary strategies are good methods for modeling selection, crossover, and mutation, biological systems are undeniably spatially distributed processes in which living organisms interact with locally available individuals rather than with the entire population at once. This work presents a model for the survival of organisms during a change in the environment to a less favorable one, putting them at risk of extinction, such as many organisms experience today under climate change or local habitat loss or fragmentation. Local spatial structure of resources and environmental quality also impacts the capacity of an evolving population to adapt. The problem is considered on a probabilistic cellular automaton with update rules based on the principles of genetic algorithms. To carry out simulations according to the described model, the Darwinian cellular automata are introduced, and the software has been designed with the code available open source. An experimental evaluation of the behavioral characteristics of the model was carried out, completed by a critical evaluation of the results obtained, parametrically describing conditions and thresholds under which extinction or survival of the population may occur.

生物在进化过程中不断地、持续地适应环境,以及如何按照尽可能接近达尔文的原则建立进化模型,是人工生命的重要关注领域。虽然遗传算法和进化策略是模拟选择、交叉和变异的好方法,但不可否认的是,生物系统是一个空间分布的过程,在这个过程中,生物体与局部可用的个体相互作用,而不是同时与整个种群相互作用。这项研究提出了一个生物生存模型,用于描述当环境发生变化,变得不利于生物生存,使生物面临灭绝风险时,生物的生存状况,例如当今许多生物在气候变化或局部栖息地丧失或破碎的情况下的生存状况。当地资源和环境质量的空间结构也会影响不断进化的种群的适应能力。该问题是在概率蜂窝自动机上考虑的,其更新规则基于遗传算法原理。为了根据所描述的模型进行模拟,引入了达尔文细胞自动机,并设计了开源代码软件。对模型的行为特征进行了实验评估,并对所获得的结果进行了批判性评估,从参数上描述了种群灭绝或生存可能发生的条件和阈值。
{"title":"Survival and Evolutionary Adaptation of Populations Under Disruptive Habitat Change: A Study With Darwinian Cellular Automata.","authors":"Hanna Derets, Chrystopher L Nehaniv","doi":"10.1162/artl_a_00457","DOIUrl":"https://doi.org/10.1162/artl_a_00457","url":null,"abstract":"<p><p>The evolution of living beings with continuous and consistent progress toward adaptation and ways to model evolution along principles as close as possible to Darwin's are important areas of focus in Artificial Life. Though genetic algorithms and evolutionary strategies are good methods for modeling selection, crossover, and mutation, biological systems are undeniably spatially distributed processes in which living organisms interact with locally available individuals rather than with the entire population at once. This work presents a model for the survival of organisms during a change in the environment to a less favorable one, putting them at risk of extinction, such as many organisms experience today under climate change or local habitat loss or fragmentation. Local spatial structure of resources and environmental quality also impacts the capacity of an evolving population to adapt. The problem is considered on a probabilistic cellular automaton with update rules based on the principles of genetic algorithms. To carry out simulations according to the described model, the Darwinian cellular automata are introduced, and the software has been designed with the code available open source. An experimental evaluation of the behavioral characteristics of the model was carried out, completed by a critical evaluation of the results obtained, parametrically describing conditions and thresholds under which extinction or survival of the population may occur.</p>","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":" ","pages":"1-18"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Artificial Life
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1