{"title":"Measuring the recruitment and growth of biofouling communities using clear recruitment panels.","authors":"Ann Wassick, Kelli Z Hunsucker, Geoffrey Swain","doi":"10.1080/08927014.2023.2243236","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":"39 6","pages":"643-660"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2243236","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.