Editorial: The effect of heterogeneity of the network of alveolar wall tissue on airflow, interstitial flow and lung biology.

Akira Tsuda, Frank S Henry
{"title":"Editorial: The effect of heterogeneity of the network of alveolar wall tissue on airflow, interstitial flow and lung biology.","authors":"Akira Tsuda, Frank S Henry","doi":"10.3389/fnetp.2023.1272172","DOIUrl":null,"url":null,"abstract":"Over inhalation, oxygen-rich air is drawn into the alveolar cavity by the expansion of the alveolar volume. The volume expansion results in an increase in the alveolar surface area. Because septal tissue is essentially incompressible, stretching of the alveolar surface area results in a thinning of the alveolar wall thickness. The reverse process happens over exhalation; that is, the surface area decreases and the wall thickness increases. The cyclic motion of the alveolar walls plays an important role in influencing the motion of fluid in the interstitial space (i.e., the space between the alveolar epithelium and vascular endothelium). The capillary network surrounding the alveoli is extensive but it does not provide a continuous, uniform, layer. Hence, the thickness and mechanical properties of the alveolar walls are not uniform. On the thin side (Figure 1), the epithelium and endothelium share one common basal lamina. This structural arrangement maximizes gas diffusion, and helps prevent fluid accumulation. On the thick side (Figure 1), extracellular matrix structurally stabilizes the septa, contributing to the mechanical properties of the alveolar walls. Dickie et al. (2007), Dickie et al. (2009) and Tsuda et al. (2019) showed that the structure of the alveolar wall changes over time. Specifically, they found that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. Interstitial fluid delivers nutrients and oxygen to cells and transports organic wastes, damaged cells, and foreign invaders (nano particles, bacteria, viruses, etc.) from the interstitial space (Choi et al., 2010). Fluid enters the interstitium from the capillaries at the arterial end of the capillary bed and leaves at the venous end. The pressure gradient driving this flow varies along the interstitium, and is a combination of hydrostatic and plasma oncotic pressure between the capillaries and the interstitium. Albumin is responsible for the majority the plasma oncotic pressure (Waddell, 2009). The variation of flow along the interstitium provides another element to the heterogeneity in the alveolar wall. Another source of heterogeneity in the alveolar wall is that the alveolar epithelium is composed of flat and thin Type I pneumocytes, and cuboidal Type II pneumocytes (Figure 1). The former covers most of the alveolar surface and is ideal for gas exchange and the latter plays a crucial role in producing and secreting pulmonary surfactant, which OPEN ACCESS","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2023.1272172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over inhalation, oxygen-rich air is drawn into the alveolar cavity by the expansion of the alveolar volume. The volume expansion results in an increase in the alveolar surface area. Because septal tissue is essentially incompressible, stretching of the alveolar surface area results in a thinning of the alveolar wall thickness. The reverse process happens over exhalation; that is, the surface area decreases and the wall thickness increases. The cyclic motion of the alveolar walls plays an important role in influencing the motion of fluid in the interstitial space (i.e., the space between the alveolar epithelium and vascular endothelium). The capillary network surrounding the alveoli is extensive but it does not provide a continuous, uniform, layer. Hence, the thickness and mechanical properties of the alveolar walls are not uniform. On the thin side (Figure 1), the epithelium and endothelium share one common basal lamina. This structural arrangement maximizes gas diffusion, and helps prevent fluid accumulation. On the thick side (Figure 1), extracellular matrix structurally stabilizes the septa, contributing to the mechanical properties of the alveolar walls. Dickie et al. (2007), Dickie et al. (2009) and Tsuda et al. (2019) showed that the structure of the alveolar wall changes over time. Specifically, they found that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. Interstitial fluid delivers nutrients and oxygen to cells and transports organic wastes, damaged cells, and foreign invaders (nano particles, bacteria, viruses, etc.) from the interstitial space (Choi et al., 2010). Fluid enters the interstitium from the capillaries at the arterial end of the capillary bed and leaves at the venous end. The pressure gradient driving this flow varies along the interstitium, and is a combination of hydrostatic and plasma oncotic pressure between the capillaries and the interstitium. Albumin is responsible for the majority the plasma oncotic pressure (Waddell, 2009). The variation of flow along the interstitium provides another element to the heterogeneity in the alveolar wall. Another source of heterogeneity in the alveolar wall is that the alveolar epithelium is composed of flat and thin Type I pneumocytes, and cuboidal Type II pneumocytes (Figure 1). The former covers most of the alveolar surface and is ideal for gas exchange and the latter plays a crucial role in producing and secreting pulmonary surfactant, which OPEN ACCESS

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肺泡壁组织网络的异质性对气流、间质流动和肺生物学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
A statistical analysis method for probability distributions in Erdös-Rényi random networks with preferential cutting-rewiring operation. On preserving anatomical detail in statistical shape analysis for clustering: focus on left atrial appendage morphology. Exploring the origins of switching dynamics in a multifunctional reservoir computer. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. Connectivity of high-frequency bursts as SOZ localization biomarker.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1