{"title":"Machine learning-based models for accessing thermal conductivity of liquids at different temperature conditions.","authors":"R Moreno Jimenez, B Creton, S Marre","doi":"10.1080/1062936X.2023.2244410","DOIUrl":null,"url":null,"abstract":"<p><p>Combating global warming-related climate change demands prompt actions to reduce greenhouse gas emissions, particularly carbon dioxide. Biomass-based biofuels represent a promising alternative fossil energy source. To convert biomass into energy, numerous conversion processes are performed at high pressure and temperature conditions, and the design and dimensioning of such processes requires thermophysical property data, particularly thermal conductivity, which are not always available in the literature. In this paper, we proposed the application of Chemoinformatics methodologies to investigate the prediction of thermal conductivity for hydrocarbons and oxygenated compounds. A compilation of experimental data followed by a careful data curation were performed to establish a database. The support vector machine algorithm has been applied to the database leading to models with good predictive abilities. The support vector regression (SVR) model has then been applied to an external set of compounds, i.e. not considered during the training of models. It showed that our SVR model can be used for the prediction of thermal conductivity values for temperatures and/or compounds that are not covered experimentally in the literature.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 8","pages":"605-617"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2244410","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Combating global warming-related climate change demands prompt actions to reduce greenhouse gas emissions, particularly carbon dioxide. Biomass-based biofuels represent a promising alternative fossil energy source. To convert biomass into energy, numerous conversion processes are performed at high pressure and temperature conditions, and the design and dimensioning of such processes requires thermophysical property data, particularly thermal conductivity, which are not always available in the literature. In this paper, we proposed the application of Chemoinformatics methodologies to investigate the prediction of thermal conductivity for hydrocarbons and oxygenated compounds. A compilation of experimental data followed by a careful data curation were performed to establish a database. The support vector machine algorithm has been applied to the database leading to models with good predictive abilities. The support vector regression (SVR) model has then been applied to an external set of compounds, i.e. not considered during the training of models. It showed that our SVR model can be used for the prediction of thermal conductivity values for temperatures and/or compounds that are not covered experimentally in the literature.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.