Eva Maria Weiß, Miriam Geldermann, Rudolf Martini, Dennis Klein
{"title":"Macrophages influence Schwann cell myelin autophagy after nerve injury and in a model of Charcot-Marie-Tooth disease","authors":"Eva Maria Weiß, Miriam Geldermann, Rudolf Martini, Dennis Klein","doi":"10.1111/jns.12561","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Aims</h3>\n \n <p>The complex cellular and molecular interactions between Schwann cells (SCs) and macrophages during Wallerian degeneration are a prerequisite to allow rapid uptake and degradation of myelin debris and axonal regeneration after peripheral nerve injury. In contrast, in non-injured nerves of Charcot-Marie-Tooth 1 neuropathies, aberrant macrophage activation by SCs carrying myelin gene defects is a disease amplifier that drives nerve damage and subsequent functional decline. Consequently, targeting nerve macrophages might be a translatable treatment strategy to mitigate disease outcome in CMT1 patients. Indeed, in previous approaches, macrophage targeting alleviated the axonopathy and promoted sprouting of damaged fibers. Surprisingly, this was still accompanied by robust myelinopathy in a model for CMT1X, suggesting additional cellular mechanisms of myelin degradation in mutant peripheral nerves. We here investigated the possibility of an increased SC-related myelin autophagy upon macrophage targeting in Cx32def mice.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Combining ex vivo and in vivo approaches, macrophages were targeted by PLX5622 treatment. SC autophagy was investigated by immunohistochemical and electron microscopical techniques.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We demonstrate a robust upregulation of markers for SC autophagy after injury and in genetically-mediated neuropathy when nerve macrophages are pharmacologically depleted. Corroborating these findings, we provide ultrastructural evidence for increased SC myelin autophagy upon treatment in vivo.</p>\n </section>\n \n <section>\n \n <h3> Interpretation</h3>\n \n <p>These findings reveal a novel communication and interaction between SCs and macrophages. This identification of alternative pathways of myelin degradation may have important implications for a better understanding of therapeutic mechanisms of pharmacological macrophage targeting in diseased peripheral nerves.</p>\n </section>\n </div>","PeriodicalId":17451,"journal":{"name":"Journal of the Peripheral Nervous System","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jns.12561","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Peripheral Nervous System","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jns.12561","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background and Aims
The complex cellular and molecular interactions between Schwann cells (SCs) and macrophages during Wallerian degeneration are a prerequisite to allow rapid uptake and degradation of myelin debris and axonal regeneration after peripheral nerve injury. In contrast, in non-injured nerves of Charcot-Marie-Tooth 1 neuropathies, aberrant macrophage activation by SCs carrying myelin gene defects is a disease amplifier that drives nerve damage and subsequent functional decline. Consequently, targeting nerve macrophages might be a translatable treatment strategy to mitigate disease outcome in CMT1 patients. Indeed, in previous approaches, macrophage targeting alleviated the axonopathy and promoted sprouting of damaged fibers. Surprisingly, this was still accompanied by robust myelinopathy in a model for CMT1X, suggesting additional cellular mechanisms of myelin degradation in mutant peripheral nerves. We here investigated the possibility of an increased SC-related myelin autophagy upon macrophage targeting in Cx32def mice.
Methods
Combining ex vivo and in vivo approaches, macrophages were targeted by PLX5622 treatment. SC autophagy was investigated by immunohistochemical and electron microscopical techniques.
Results
We demonstrate a robust upregulation of markers for SC autophagy after injury and in genetically-mediated neuropathy when nerve macrophages are pharmacologically depleted. Corroborating these findings, we provide ultrastructural evidence for increased SC myelin autophagy upon treatment in vivo.
Interpretation
These findings reveal a novel communication and interaction between SCs and macrophages. This identification of alternative pathways of myelin degradation may have important implications for a better understanding of therapeutic mechanisms of pharmacological macrophage targeting in diseased peripheral nerves.
期刊介绍:
The Journal of the Peripheral Nervous System is the official journal of the Peripheral Nerve Society. Founded in 1996, it is the scientific journal of choice for clinicians, clinical scientists and basic neuroscientists interested in all aspects of biology and clinical research of peripheral nervous system disorders.
The Journal of the Peripheral Nervous System is a peer-reviewed journal that publishes high quality articles on cell and molecular biology, genomics, neuropathic pain, clinical research, trials, and unique case reports on inherited and acquired peripheral neuropathies.
Original articles are organized according to the topic in one of four specific areas: Mechanisms of Disease, Genetics, Clinical Research, and Clinical Trials.
The journal also publishes regular review papers on hot topics and Special Issues on basic, clinical, or assembled research in the field of peripheral nervous system disorders. Authors interested in contributing a review-type article or a Special Issue should contact the Editorial Office to discuss the scope of the proposed article with the Editor-in-Chief.