Qingqing Zhao, Shujiang Geng, Xingye Gao, Gang Chen, Fuhui Wang
{"title":"Ni/NiFe2 dual-layer coating for SOFC steel interconnects application","authors":"Qingqing Zhao, Shujiang Geng, Xingye Gao, Gang Chen, Fuhui Wang","doi":"10.1016/j.powera.2020.100011","DOIUrl":null,"url":null,"abstract":"<div><p>Ni/NiFe<sub>2</sub> dual-layer coating is fabricated on SUS 430 stainless steel by magnetron sputtering for solid oxide fuel cells (SOFCs) interconnect application. Ni/NiFe<sub>2</sub> coated steels are exposed to air at 800 °C for duration of up to 10 weeks in comparison with NiFe<sub>2</sub> coated steels. Ni/NiFe<sub>2</sub> coating is thermally converted to an oxide structure with an inner NiO layer and an outer NiFe<sub>2</sub>O<sub>4</sub> spinel layer. NiO/NiFe<sub>2</sub>O<sub>4</sub> oxide layer is more effective in blocking Cr migration and reducing oxidation rate during long-term exposure than a single NiFe<sub>2</sub>O<sub>4</sub> layer converted from NiFe<sub>2</sub> coating. Enhancements on oxidation resistance and Cr-blocking capability are attributed to NiO layer serving as a diffusion barrier between Cr<sub>2</sub>O<sub>3</sub> and NiFe<sub>2</sub>O<sub>4</sub>.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"2 ","pages":"Article 100011"},"PeriodicalIF":5.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100011","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11
Abstract
Ni/NiFe2 dual-layer coating is fabricated on SUS 430 stainless steel by magnetron sputtering for solid oxide fuel cells (SOFCs) interconnect application. Ni/NiFe2 coated steels are exposed to air at 800 °C for duration of up to 10 weeks in comparison with NiFe2 coated steels. Ni/NiFe2 coating is thermally converted to an oxide structure with an inner NiO layer and an outer NiFe2O4 spinel layer. NiO/NiFe2O4 oxide layer is more effective in blocking Cr migration and reducing oxidation rate during long-term exposure than a single NiFe2O4 layer converted from NiFe2 coating. Enhancements on oxidation resistance and Cr-blocking capability are attributed to NiO layer serving as a diffusion barrier between Cr2O3 and NiFe2O4.