{"title":"Recent progress in vaccine development targeting pre-clinical human toxoplasmosis.","authors":"Ki-Back Chu, Fu-Shi Quan","doi":"10.3347/PHD.22097","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.</p>","PeriodicalId":74397,"journal":{"name":"Parasites, hosts and diseases","volume":"61 3","pages":"231-239"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/d6/phd-22097.PMC10471472.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites, hosts and diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3347/PHD.22097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.