Preclinical evaluation of singlet oxygen-cleavable prodrugs in combination with protoporphyrin IX-photodynamic therapy in an orthotopic rat model of non-muscle-invasive bladder cancer.
Kazi Md Mahabubur Rahman, Barbara A Foster, Youngjae You
{"title":"Preclinical evaluation of singlet oxygen-cleavable prodrugs in combination with protoporphyrin IX-photodynamic therapy in an orthotopic rat model of non-muscle-invasive bladder cancer.","authors":"Kazi Md Mahabubur Rahman, Barbara A Foster, Youngjae You","doi":"10.1111/php.13838","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) initially employed red light, which caused some patients to experience permanent bladder contractions. PDT using the FDA-approved drug hexaminolevulinate (HAL), which produces protoporphyrin IX (PpIX) in the tumor, showed some promise but has low efficacy in treating non-muscle-invasive bladder cancer (NMIBC). We developed singlet oxygen-activatable prodrugs of two anticancer drugs, paclitaxel and mitomycin C, to enhance the antitumor effect of PpIX-PDT without producing systemic side effects, by promoting only local release of the active chemotherapeutic agent. Orthotopic NMIBC model was used to compare the efficacy of prodrugs only, PpIX-PDT, and prodrugs + PpIX-PDT. 532 nm laser with a total power of 50 mW for 20 min (60 J, single treatment) was used with HAL and prodrugs. Histology and microscopic methods with image analysis were used to evaluate the tumor staging, antitumor efficacy, and local toxicity. Prodrug + PpIX-PDT produced superior antitumor efficacy than PpIX-PDT alone with statistical significance. Both PpIX-PDT alone and combination therapy resulted in mild damage to the bladder epithelium in the normal bladder area with no apparent damage to the muscle layer. Overall, SO-cleavable prodrugs improved the antitumor efficacy of PpIX-PDT without causing severe and permanent damage to the bladder muscle layer.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":"1590-1602"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/php.13838","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) initially employed red light, which caused some patients to experience permanent bladder contractions. PDT using the FDA-approved drug hexaminolevulinate (HAL), which produces protoporphyrin IX (PpIX) in the tumor, showed some promise but has low efficacy in treating non-muscle-invasive bladder cancer (NMIBC). We developed singlet oxygen-activatable prodrugs of two anticancer drugs, paclitaxel and mitomycin C, to enhance the antitumor effect of PpIX-PDT without producing systemic side effects, by promoting only local release of the active chemotherapeutic agent. Orthotopic NMIBC model was used to compare the efficacy of prodrugs only, PpIX-PDT, and prodrugs + PpIX-PDT. 532 nm laser with a total power of 50 mW for 20 min (60 J, single treatment) was used with HAL and prodrugs. Histology and microscopic methods with image analysis were used to evaluate the tumor staging, antitumor efficacy, and local toxicity. Prodrug + PpIX-PDT produced superior antitumor efficacy than PpIX-PDT alone with statistical significance. Both PpIX-PDT alone and combination therapy resulted in mild damage to the bladder epithelium in the normal bladder area with no apparent damage to the muscle layer. Overall, SO-cleavable prodrugs improved the antitumor efficacy of PpIX-PDT without causing severe and permanent damage to the bladder muscle layer.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.