The advent of chatbots raises the possibility of a paradigm shift across society including the most technical of fields with regard to access to information, generation of knowledge, and dissemination of education and training. Photochemistry is a scientific endeavor with roots in chemistry and physics and branches that encompass diverse disciplines ranging from astronomy to zoology. Here, five chatbots have each been challenged with 13 photochemically relevant queries. The chatbots included ChatGPT 3.5, ChatGPT 4.0, Copilot, Gemini Advanced, and Meta AI. The queries encompassed fundamental concepts (e.g., "Why is the fluorescence spectrum typically the mirror image of the absorption spectrum?"), practical matters (e.g., "What is the inner filter effect and how to avoid it?"), philosophical matters ("Please create the most important photochemistry questions."), and specific molecular features (e.g., "Why are azo dyes non-fluorescent?"). The chatbots were moderately effective in answering queries concerning fundamental concepts in photochemistry but were glaringly deficient in specialized queries for dyes and fluorophores. In some instances, a correct response was embedded in verbose scientific nonsense whereas in others the entire response, while grammatically correct, was utterly meaningless. The unreliable accuracy makes present chatbots poorly suited for unaided educational purposes and highlights the importance of domain experts.
{"title":"Performance of chatbots in queries concerning fundamental concepts in photochemistry.","authors":"Masahiko Taniguchi, Jonathan S Lindsey","doi":"10.1111/php.14037","DOIUrl":"https://doi.org/10.1111/php.14037","url":null,"abstract":"<p><p>The advent of chatbots raises the possibility of a paradigm shift across society including the most technical of fields with regard to access to information, generation of knowledge, and dissemination of education and training. Photochemistry is a scientific endeavor with roots in chemistry and physics and branches that encompass diverse disciplines ranging from astronomy to zoology. Here, five chatbots have each been challenged with 13 photochemically relevant queries. The chatbots included ChatGPT 3.5, ChatGPT 4.0, Copilot, Gemini Advanced, and Meta AI. The queries encompassed fundamental concepts (e.g., \"Why is the fluorescence spectrum typically the mirror image of the absorption spectrum?\"), practical matters (e.g., \"What is the inner filter effect and how to avoid it?\"), philosophical matters (\"Please create the most important photochemistry questions.\"), and specific molecular features (e.g., \"Why are azo dyes non-fluorescent?\"). The chatbots were moderately effective in answering queries concerning fundamental concepts in photochemistry but were glaringly deficient in specialized queries for dyes and fluorophores. In some instances, a correct response was embedded in verbose scientific nonsense whereas in others the entire response, while grammatically correct, was utterly meaningless. The unreliable accuracy makes present chatbots poorly suited for unaided educational purposes and highlights the importance of domain experts.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to evaluate and compare the effect of fibroblastic growth factor 2 (FGF-2) and photobiomodulation, solely or in combination, in angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The study comprises the following groups: control group (hPDLSCs only), FGF-2 (50 ng/mL) group, two photobiomodulation groups with a 4 J/cm2 energy density of 808 nm diode laser (1-Session or 2-Session), and two groups with the combination of each 1-Session or 2-Session photobiomodulation with FGF-2 (50 ng/mL). The 4',6-diamidino-2-phenylindole (DAPI) staining, and Methyl Thiazolyl Tetrazolium (MTT) assay were undertaken on days 2, 4, and 6. Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis on days 2, 4, 6, 8, and 11 was conducted to investigate VEGF-A and ANG-I genes. Coherently, the results of the DAPI and MTT showed the Laser (2-Session) group had higher cell viability than others on day 6. All groups demonstrated a growth pattern in the expression of VEGF-A and ANG-I from day 2 to 8 and, afterward, a significant downgrowth to day 11 (p < 0.05). The most amounts of expression of VEGF-A and ANG-I on day 8 were seen in the Laser (2-Session) group. Two-time application of photobiomodulation using a diode laser with 808 nm wavelength after 2 and 4 days of cell seeding can be associated with higher cell viability and angiogenic differentiation of hPDLSCs compared to the one-time application of photobiomodulation and administration of FGF-2.
{"title":"Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation.","authors":"Fazele Atarbashi-Moghadam, Amirhosein Mahmoudian, Niloofar Taghipour, Neda Hakimiha, Ali Azadi, Hanieh Nokhbatolfoghahaei","doi":"10.1111/php.14032","DOIUrl":"https://doi.org/10.1111/php.14032","url":null,"abstract":"<p><p>This study aims to evaluate and compare the effect of fibroblastic growth factor 2 (FGF-2) and photobiomodulation, solely or in combination, in angiogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The study comprises the following groups: control group (hPDLSCs only), FGF-2 (50 ng/mL) group, two photobiomodulation groups with a 4 J/cm<sup>2</sup> energy density of 808 nm diode laser (1-Session or 2-Session), and two groups with the combination of each 1-Session or 2-Session photobiomodulation with FGF-2 (50 ng/mL). The 4',6-diamidino-2-phenylindole (DAPI) staining, and Methyl Thiazolyl Tetrazolium (MTT) assay were undertaken on days 2, 4, and 6. Quantitative Real-time Polymerase Chain Reaction (RT-qPCR) analysis on days 2, 4, 6, 8, and 11 was conducted to investigate VEGF-A and ANG-I genes. Coherently, the results of the DAPI and MTT showed the Laser (2-Session) group had higher cell viability than others on day 6. All groups demonstrated a growth pattern in the expression of VEGF-A and ANG-I from day 2 to 8 and, afterward, a significant downgrowth to day 11 (p < 0.05). The most amounts of expression of VEGF-A and ANG-I on day 8 were seen in the Laser (2-Session) group. Two-time application of photobiomodulation using a diode laser with 808 nm wavelength after 2 and 4 days of cell seeding can be associated with higher cell viability and angiogenic differentiation of hPDLSCs compared to the one-time application of photobiomodulation and administration of FGF-2.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia E Gutierrez-Bayona, Camryn Petersen, Raabia H Hashmi, Manuela Buonanno, Igor Shuryak, Brian Ponnaiya, Norman J Kleiman, David J Brenner, David Welch
Guidance on maximal limits for ultraviolet (UV) exposure has been developed by national and international organizations to protect against adverse effects on human skin and eyes. These guidelines consider the risk of both acute effects (i.e., erythema and photokeratitis) and delayed effects (e.g., skin and ocular cancers) when determining exposure limits, and specify the dose a person can safely receive during an 8-h period without harmful effects. The determination of these exposure limits relies on the action spectra of photobiological responses triggered by UV radiation that quantify the effectiveness of each wavelength at eliciting each of these effects. With growing interest in using far-UVC (200-235 nm) radiation to control the spread of airborne pathogens, recent arguments have emerged about revisiting exposure limits for UV wavelengths. However, the standard erythema action spectrum, which provides some of the quantitative basis for these limits, has not been extended below 240 nm. This study assists to expand the erythema action spectrum to far-UVC wavelengths using a hairless albino mice model. We estimate that inducing acute effects on mouse skin with 222 nm radiation requires a dose of 1162 mJ/cm2, well above the current ACGIH skin exposure limit of 480 mJ/cm2.
{"title":"Extending the acute skin response spectrum to include the far-UVC.","authors":"Natalia E Gutierrez-Bayona, Camryn Petersen, Raabia H Hashmi, Manuela Buonanno, Igor Shuryak, Brian Ponnaiya, Norman J Kleiman, David J Brenner, David Welch","doi":"10.1111/php.14035","DOIUrl":"https://doi.org/10.1111/php.14035","url":null,"abstract":"<p><p>Guidance on maximal limits for ultraviolet (UV) exposure has been developed by national and international organizations to protect against adverse effects on human skin and eyes. These guidelines consider the risk of both acute effects (i.e., erythema and photokeratitis) and delayed effects (e.g., skin and ocular cancers) when determining exposure limits, and specify the dose a person can safely receive during an 8-h period without harmful effects. The determination of these exposure limits relies on the action spectra of photobiological responses triggered by UV radiation that quantify the effectiveness of each wavelength at eliciting each of these effects. With growing interest in using far-UVC (200-235 nm) radiation to control the spread of airborne pathogens, recent arguments have emerged about revisiting exposure limits for UV wavelengths. However, the standard erythema action spectrum, which provides some of the quantitative basis for these limits, has not been extended below 240 nm. This study assists to expand the erythema action spectrum to far-UVC wavelengths using a hairless albino mice model. We estimate that inducing acute effects on mouse skin with 222 nm radiation requires a dose of 1162 mJ/cm<sup>2</sup>, well above the current ACGIH skin exposure limit of 480 mJ/cm<sup>2</sup>.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To elucidate the inhibition effects of Zn2+ and Cd2+ on the luciferin-luciferase reaction, we performed quantitative measurements of quantum yields and spectral shapes for in vitro firefly bioluminescence in aqueous solutions containing ZnSO4, ZnCl2, CdSO4, and CdCl2 at different concentrations. Particular care was taken toward the equilibrium between metal ions and enzyme proteins, anion difference, solubility, and uncertainty evaluation. The bioluminescence quantum yields decreased almost linearly to the concentration of Zn2+ and Cd2+ below 0.25 mM. No obvious difference was found between the chloride and sulfate anion solutions. We defined inhibition sensitivity as the decrease in relative quantum yield versus the concentration of metal ions, and they were determined to be 1.48 ± 0.13 and 1.13 ± 0.16/mM for Zn2+ and Cd2+, respectively. We estimated the detection limit of inhibition effects as the concentration of metal ions that decrease relative quantum yields by 10%, which were 0.07 mM (4 ppm) and 0.09 mM (10 ppm) for Zn2+ and Cd2+, respectively. The shape of the bioluminescence spectra changed sensitively with the increase in Zn2+ concentrations. The bioluminescence peak energy for 0.10-mM Zn2+ was ~2.2 eV, while that for 0.25-mM Zn2+ was ~2.0 eV. The shape of the spectra changed less sensitively with the increase in Cd2+concentrations, and the peak energy was at ~2.2 eV for Cd2+ concentrations of 0.10 and 0.25 mM.
{"title":"Inhibition sensitivity of in vitro firefly bioluminescence quantum yields to Zn<sup>2+</sup> and Cd<sup>2+</sup> concentrations in aqueous solutions.","authors":"Ryohei Ono, Keisuke Saito, Daisuke Tezuka, Sakura Yoshii, Masataka Kobayashi, Hidefumi Akiyama, Nobuaki Koga, Hideyuki Itabashi, Miyabi Hiyama","doi":"10.1111/php.14024","DOIUrl":"https://doi.org/10.1111/php.14024","url":null,"abstract":"<p><p>To elucidate the inhibition effects of Zn<sup>2+</sup> and Cd<sup>2+</sup> on the luciferin-luciferase reaction, we performed quantitative measurements of quantum yields and spectral shapes for in vitro firefly bioluminescence in aqueous solutions containing ZnSO<sub>4</sub>, ZnCl<sub>2</sub>, CdSO<sub>4</sub>, and CdCl<sub>2</sub> at different concentrations. Particular care was taken toward the equilibrium between metal ions and enzyme proteins, anion difference, solubility, and uncertainty evaluation. The bioluminescence quantum yields decreased almost linearly to the concentration of Zn<sup>2+</sup> and Cd<sup>2+</sup> below 0.25 mM. No obvious difference was found between the chloride and sulfate anion solutions. We defined inhibition sensitivity as the decrease in relative quantum yield versus the concentration of metal ions, and they were determined to be 1.48 ± 0.13 and 1.13 ± 0.16/mM for Zn<sup>2+</sup> and Cd<sup>2+</sup>, respectively. We estimated the detection limit of inhibition effects as the concentration of metal ions that decrease relative quantum yields by 10%, which were 0.07 mM (4 ppm) and 0.09 mM (10 ppm) for Zn<sup>2+</sup> and Cd<sup>2+</sup>, respectively. The shape of the bioluminescence spectra changed sensitively with the increase in Zn<sup>2+</sup> concentrations. The bioluminescence peak energy for 0.10-mM Zn<sup>2+</sup> was ~2.2 eV, while that for 0.25-mM Zn<sup>2+</sup> was ~2.0 eV. The shape of the spectra changed less sensitively with the increase in Cd<sup>2+</sup>concentrations, and the peak energy was at ~2.2 eV for Cd<sup>2+</sup> concentrations of 0.10 and 0.25 mM.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aline S Perez, Natalia M Inada, Natasha F Mezzacappo, Jose D Vollet-Filho, Vanderlei S Bagnato
Mitochondria play an important role in cellular function, not only as a major site of adenosine triphosphate (ATP) production but also by regulating energy expenditure, apoptosis signaling, control of the cell cycle, cellular growth, cell differentiation, transportation of metabolites, and production of reactive oxygen species. Interaction with electromagnetic waves can lead to dysregulation or alterations in the patterns of energy activities in the mitochondria. Ultraviolet light (UV) can be found in sunlight and artificial sources, such as lamps. UV radiation can cause damage to DNA, proteins, and lipids. Besides that, UV radiation is largely used in microorganism disinfection. To establish possible alterations in mitochondrial bioenergetics, this study proposes to investigate the UV (at two distinct intervals) effects on isolated mitochondria from mice liver to obtain direct responses and selective permeability of the internal membrane information. UVA-371 and UVC-255 nm lamps were used to irradiate, at different doses varying from 22.5 to 756 mJ/cm2, isolated mitochondria samples. Mitochondrial respiration pathways were investigated by high-resolution respirometry, and possible mitochondrial membrane damages were evaluated by mitochondrial swelling by spectrophotometer analysis. UVC irradiation results (in the higher dose) indicate decrease in 75% of mitochondrial bioenergetics capacity, such as limitation of oxidative phosphorylation in 60% and increased energy dissipation in 30%. Mitochondrial swelling experiments (spectrophotometer) indicated inner membrane damage, and consequently a loss of selective permeability. Direct correlation between irradiation and effect responses was observed, mitochondrial bioenergetics is severely affected by UVC radiation, but (UVA) radiation did not present bioenergetic alterations. These alterations can contribute to improving the knowledge behind the cell death mechanism in disinfection UV light and UV therapy such as phototherapy.
{"title":"Ultraviolet radiation inhibits mitochondrial bioenergetics activity.","authors":"Aline S Perez, Natalia M Inada, Natasha F Mezzacappo, Jose D Vollet-Filho, Vanderlei S Bagnato","doi":"10.1111/php.14034","DOIUrl":"https://doi.org/10.1111/php.14034","url":null,"abstract":"<p><p>Mitochondria play an important role in cellular function, not only as a major site of adenosine triphosphate (ATP) production but also by regulating energy expenditure, apoptosis signaling, control of the cell cycle, cellular growth, cell differentiation, transportation of metabolites, and production of reactive oxygen species. Interaction with electromagnetic waves can lead to dysregulation or alterations in the patterns of energy activities in the mitochondria. Ultraviolet light (UV) can be found in sunlight and artificial sources, such as lamps. UV radiation can cause damage to DNA, proteins, and lipids. Besides that, UV radiation is largely used in microorganism disinfection. To establish possible alterations in mitochondrial bioenergetics, this study proposes to investigate the UV (at two distinct intervals) effects on isolated mitochondria from mice liver to obtain direct responses and selective permeability of the internal membrane information. UVA-371 and UVC-255 nm lamps were used to irradiate, at different doses varying from 22.5 to 756 mJ/cm<sup>2</sup>, isolated mitochondria samples. Mitochondrial respiration pathways were investigated by high-resolution respirometry, and possible mitochondrial membrane damages were evaluated by mitochondrial swelling by spectrophotometer analysis. UVC irradiation results (in the higher dose) indicate decrease in 75% of mitochondrial bioenergetics capacity, such as limitation of oxidative phosphorylation in 60% and increased energy dissipation in 30%. Mitochondrial swelling experiments (spectrophotometer) indicated inner membrane damage, and consequently a loss of selective permeability. Direct correlation between irradiation and effect responses was observed, mitochondrial bioenergetics is severely affected by UVC radiation, but (UVA) radiation did not present bioenergetic alterations. These alterations can contribute to improving the knowledge behind the cell death mechanism in disinfection UV light and UV therapy such as phototherapy.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl "hot spot," the focal point of initial hydrolytic attack.
细胞和分离的 DNA 在暴露于阳光或其他紫外线源的紫外线部分时,会受到光激发,导致相邻链内堆叠的嘧啶核碱基环(即 5'-Py-p-Py-3' 位点)发生共价二聚化。在哺乳动物 DNA 和所有其他生命形式的 DNA 中,这些修饰会产生环丁烷嘧啶二聚体(CPDs)和嘧啶(6-4)嘧啶酮光产物(6-4PPs)等病变;在细菌内孢子中,则会产生孢子光产物(SPs)。重要的是,在高等生物体内形成的病变可导致包括癌症在内的疾病状态。虽然嘧啶二聚体病变的形成、结构和生物学结果一直是许多研究的重点,但直到最近,人们对其基本化学特性的了解还比较少。对嘧啶二聚体病变的这种了解可能会带来新的手段,通过化学方法识别和量化基因组中的嘧啶二聚体病变。本综述旨在概述源于 5'-T-p-T 位点的链内嘧啶二聚体病变,重点介绍目前已知的关于它们各自的体外碱性化学反应活性。这里包括对 DNA 病变 CPD、6-4PP 和 SP 以及单体嘧啶病变 5,6-二氢-2'-脱氧尿苷 (dHdU) 的研究描述,以作比较。值得注意的是,这些不同病变的碱性水解都以病变 Py 环(T)的芳香性丧失为中心,导致羰基 "热点",即最初水解攻击的焦点。
{"title":"On the chemistry of sunlight-induced DNA lesions: A perspective on the alkaline chemical-induced reactivities of photo-damaged pyrimidine intra-strand dimers.","authors":"Ritu Chaturvedi, Eric C Long","doi":"10.1111/php.14031","DOIUrl":"https://doi.org/10.1111/php.14031","url":null,"abstract":"<p><p>Photoexcitation of cellular as well as isolated DNAs upon exposure to the UV portion of sunlight or other UV sources can lead to the covalent dimerization of adjacent intra-strand stacked pyrimidine nucleobase rings (i.e., at 5'-Py-p-Py-3' sites). These modifications generate, in mammalian DNA as well as the DNA of all other forms of life, lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs); and, in bacterial endospores, spore photoproducts (SPs). Importantly, the lesions formed in higher organisms can lead to disease states including cancer. While the formation, structure, and biological outcomes of pyrimidine dimer lesions have been the focus of much research, less has been known about their fundamental chemical properties until recently. Such an understanding of these lesions may lead to novel means to chemically identify and quantitate their presence in the genome. This review is intended to provide an overview of intra-strand pyrimidine dimer lesions derived from 5'-T-p-T sites with a focus on presenting what is currently known about their individual in vitro alkaline chemical reactivities. Included here are descriptions of investigations of the DNA lesions CPD, 6-4PP, and SP, and, for comparison, the monomeric pyrimidine lesion 5,6-dihydo-2'-deoxyuridine (dHdU). Of interest, the alkaline hydrolyses of these various lesions are all found to be centered on the loss of aromaticity of a lesion Py ring (T) leading to a carbonyl \"hot spot,\" the focal point of initial hydrolytic attack.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study was designed to determine the effect of photobiomodulation therapy on dental implant stability. A complete systematic search was performed in PUBMED/MEDLINE, COCHRANE library databases, EMBASE, SCOPUS, and Google Scholar databases on articles published until June 2024. All the RCTs and CCTs reported the solo impact of photobiomodulation on dental implant stability in humans were included. The means and standard deviation for implant stability and sample size were extracted for the meta-analysis. The statistical analysis was conducted using Stata 17 software, and random effect models were applied to assess the source of heterogeneity. The I2 statistic was used to estimate the significance of any discrepancies in the therapy result. After a full-text inspection, 17 articles were qualified for systematic review, and 14 were included in the meta-analysis. Statically significant differences in implant stability were observed between the laser and the control groups on weeks 2 in ISQ reporting groups (p = 0.01, CI 95%) and weeks 4 and 8 in PTV reporting groups (p < 0.001, CI 95%). Despite limitations, the study suggests that PBM therapy benefits patients with dental implants at different periods, particularly during the early phases of healing.
{"title":"The effect of photobiomodulation therapy on implant stability: A systematic review and meta-analysis.","authors":"Mahnaz Arshad, Yekta Mazidi, Nasim Chiniforush, Armin Shirvani, Seyed Hossein Bassir","doi":"10.1111/php.14033","DOIUrl":"https://doi.org/10.1111/php.14033","url":null,"abstract":"<p><p>This study was designed to determine the effect of photobiomodulation therapy on dental implant stability. A complete systematic search was performed in PUBMED/MEDLINE, COCHRANE library databases, EMBASE, SCOPUS, and Google Scholar databases on articles published until June 2024. All the RCTs and CCTs reported the solo impact of photobiomodulation on dental implant stability in humans were included. The means and standard deviation for implant stability and sample size were extracted for the meta-analysis. The statistical analysis was conducted using Stata 17 software, and random effect models were applied to assess the source of heterogeneity. The I2 statistic was used to estimate the significance of any discrepancies in the therapy result. After a full-text inspection, 17 articles were qualified for systematic review, and 14 were included in the meta-analysis. Statically significant differences in implant stability were observed between the laser and the control groups on weeks 2 in ISQ reporting groups (p = 0.01, CI 95%) and weeks 4 and 8 in PTV reporting groups (p < 0.001, CI 95%). Despite limitations, the study suggests that PBM therapy benefits patients with dental implants at different periods, particularly during the early phases of healing.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isabelle Kaiser, Annette B Pfahlberg, Maria Lehmann, Esther Buchta, Wolfgang Uter, Olaf Gefeller
Thirty years ago, the Global Solar UV Index (UVI) has been introduced as a health promotion instrument to improve sun protection. We assessed systematically global levels of awareness and use of the UVI as a prerequisite for the preventive effectiveness of this public health tool. We conducted a comprehensive literature search across 10 databases, including PubMed, Scopus and Web of Science Core Collection, as well as clinical trial registries and gray literature databases. The risk of bias of studies was evaluated using the Joanna Briggs Institute checklist for prevalence studies. In addition to narrative and descriptive analysis, we performed meta-analyses with geographical subgroup analyses to statistically summarize the results. In total, we identified 40 publications from 39 different studies across multiple global regions. However, the number of studies in the analyses varies depending on the outcome. The results, especially the awareness of the UVI, were largely dependent on the specific geographical location of the studies. While the prevalence of awareness of the UVI is high among Australian populations, there is considerable variability in levels of awareness across other global regions. At the same time, the use of the UVI is at a low level across all regions, demonstrating the need for enhanced dissemination of knowledge about the perils associated with ultraviolet radiation and the advantages of using the UVI.
三十年前,全球太阳紫外线指数(UVI)作为一种健康促进工具被引入,以提高防晒效果。我们系统地评估了全球对紫外线指数的认识和使用水平,以此作为这一公共卫生工具预防效果的先决条件。我们在 10 个数据库中进行了全面的文献检索,包括 PubMed、Scopus 和 Web of Science Core Collection,以及临床试验登记和灰色文献数据库。我们使用乔安娜-布里格斯研究所(Joanna Briggs Institute)的流行病学研究核对表对研究的偏倚风险进行了评估。除了叙述性和描述性分析外,我们还进行了荟萃分析和地理分组分析,以便对结果进行统计总结。我们共发现了来自全球多个地区 39 项不同研究的 40 篇出版物。然而,分析中的研究数量因结果而异。研究结果,尤其是对 UVI 的认知度,在很大程度上取决于研究的具体地理位置。虽然澳大利亚人对 UVI 的了解程度较高,但全球其他地区的了解程度却存在很大差异。同时,所有地区对紫外线辐射探测器的使用率都很低,这表明有必要加强宣传紫外线辐射的危害和使用紫外线辐射探测器的好处。
{"title":"The extent of public awareness and use of the Global Solar UV Index as a worldwide health promotion instrument to improve sun protection: A systematic review and meta-analysis.","authors":"Isabelle Kaiser, Annette B Pfahlberg, Maria Lehmann, Esther Buchta, Wolfgang Uter, Olaf Gefeller","doi":"10.1111/php.14028","DOIUrl":"https://doi.org/10.1111/php.14028","url":null,"abstract":"<p><p>Thirty years ago, the Global Solar UV Index (UVI) has been introduced as a health promotion instrument to improve sun protection. We assessed systematically global levels of awareness and use of the UVI as a prerequisite for the preventive effectiveness of this public health tool. We conducted a comprehensive literature search across 10 databases, including PubMed, Scopus and Web of Science Core Collection, as well as clinical trial registries and gray literature databases. The risk of bias of studies was evaluated using the Joanna Briggs Institute checklist for prevalence studies. In addition to narrative and descriptive analysis, we performed meta-analyses with geographical subgroup analyses to statistically summarize the results. In total, we identified 40 publications from 39 different studies across multiple global regions. However, the number of studies in the analyses varies depending on the outcome. The results, especially the awareness of the UVI, were largely dependent on the specific geographical location of the studies. While the prevalence of awareness of the UVI is high among Australian populations, there is considerable variability in levels of awareness across other global regions. At the same time, the use of the UVI is at a low level across all regions, demonstrating the need for enhanced dissemination of knowledge about the perils associated with ultraviolet radiation and the advantages of using the UVI.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dental fear and phobia are prevalent worldwide, with local anesthesia being the most feared procedure. This study aimed to determine whether photobiomodulation therapy (PBMT), used as a pre-anesthetic, could modulate puncture pain and enhance the effectiveness of local anesthesia. In this controlled, randomized, double-blind study, 49 participants were divided into an experimental group (n = 24), which received infrared laser therapy (100 mW, at 808 nm, 8 J, 80 s at a single point) immediately before standard anesthesia; and control group (n = 25), which received the standard anesthetic technique and sham laser. Pain levels were measured using the visual analog scale, and anesthetic efficacy was assessed through electrical tests (latency), percentage of failures, and cartridge usage. Anxiety levels were evaluated using the Beck Anxiety Inventory. Cardiovascular parameters were evaluated through blood pressure, oxygen levels, and heart rate. This randomized, double-blind study found no difference between groups in these experimental conditions. The bias toward a positive PBMT result was sufficiently removed. Autonomic responses of the PBMT group were maintained stable during the procedure.
{"title":"Photobiomodulation therapy on puncture-associated pain: A controlled randomized double-blind clinical trial.","authors":"Giovanna Fontgalland Ferreira, Glaucia Gonçales Abud Machado, Vinicius Leão Roncolato, Karen Muller Ramalho, Lara Jansiski Motta, Sandra Kalil Bussadori, Cinthya Cosme Gutierrez Duran, Kristianne Porta Santos Fernandes, Raquel Agnelli Mesquita Ferrari, Nasim Chiniforush, Anna Carolina Ratto Tempestini Horliana","doi":"10.1111/php.14027","DOIUrl":"https://doi.org/10.1111/php.14027","url":null,"abstract":"<p><p>Dental fear and phobia are prevalent worldwide, with local anesthesia being the most feared procedure. This study aimed to determine whether photobiomodulation therapy (PBMT), used as a pre-anesthetic, could modulate puncture pain and enhance the effectiveness of local anesthesia. In this controlled, randomized, double-blind study, 49 participants were divided into an experimental group (n = 24), which received infrared laser therapy (100 mW, at 808 nm, 8 J, 80 s at a single point) immediately before standard anesthesia; and control group (n = 25), which received the standard anesthetic technique and sham laser. Pain levels were measured using the visual analog scale, and anesthetic efficacy was assessed through electrical tests (latency), percentage of failures, and cartridge usage. Anxiety levels were evaluated using the Beck Anxiety Inventory. Cardiovascular parameters were evaluated through blood pressure, oxygen levels, and heart rate. This randomized, double-blind study found no difference between groups in these experimental conditions. The bias toward a positive PBMT result was sufficiently removed. Autonomic responses of the PBMT group were maintained stable during the procedure.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Coradi Tonon, Alessandra Nara de Souza Rastelli, Chathuna Bodahandi, Shoaib Ashraf, Tayyaba Hasan, QianFeng Xu, Alexander Greer, Alan M Lyons
Superhydrophobic antimicrobial photodynamic therapy (SH-aPDT) is advantageous wherein airborne singlet oxygen (1O2) is delivered from a device tip to kill a biofilm with no photosensitizer exposure and no bacterial selectivity (Gram + or Gram -). For effective treatment of periodontitis, the frequency of treatment as well as the optical light fluence required is not known. Thus, we sought to determine whether single or repeated SH-aPDT treatments would work best in vivo using two fluence values: 60 and 125 J/cm2. We assessed the efficacy of three protocols: single treatment; interval treatments (days 0, 2, and 7); and consecutive treatments (days 0, 1, and 2). After 30 days of evaluation, we found that, SH-aPDT in 3 consecutive treatments significantly decreased Porphyromonas gingivalis levels compared to single and interval SH-aPDT treatments, as well as SRP-chlorhexidine (CHX) controls (p < 0.05). Notably, clinical parameters also improved (p < 0.05), and histological and stereometric analyses revealed that consecutive SH-aPDT treatments were the most effective for promoting healing and reducing inflammation. Our study shows what works best for SH-aPDT, while also demonstrating SH-aPDT advantages to treatment of periodontitis including no bacterial selectivity (Gram + or Gram -) and preventing the development of bacterial resistance.
{"title":"Effect of treatment frequency on the efficacy of superhydrophobic antimicrobial photodynamic therapy of periodontitis in a wistar rat model.","authors":"Caroline Coradi Tonon, Alessandra Nara de Souza Rastelli, Chathuna Bodahandi, Shoaib Ashraf, Tayyaba Hasan, QianFeng Xu, Alexander Greer, Alan M Lyons","doi":"10.1111/php.14021","DOIUrl":"https://doi.org/10.1111/php.14021","url":null,"abstract":"<p><p>Superhydrophobic antimicrobial photodynamic therapy (SH-aPDT) is advantageous wherein airborne singlet oxygen (<sup>1</sup>O<sub>2</sub>) is delivered from a device tip to kill a biofilm with no photosensitizer exposure and no bacterial selectivity (Gram + or Gram -). For effective treatment of periodontitis, the frequency of treatment as well as the optical light fluence required is not known. Thus, we sought to determine whether single or repeated SH-aPDT treatments would work best in vivo using two fluence values: 60 and 125 J/cm<sup>2</sup>. We assessed the efficacy of three protocols: single treatment; interval treatments (days 0, 2, and 7); and consecutive treatments (days 0, 1, and 2). After 30 days of evaluation, we found that, SH-aPDT in 3 consecutive treatments significantly decreased Porphyromonas gingivalis levels compared to single and interval SH-aPDT treatments, as well as SRP-chlorhexidine (CHX) controls (p < 0.05). Notably, clinical parameters also improved (p < 0.05), and histological and stereometric analyses revealed that consecutive SH-aPDT treatments were the most effective for promoting healing and reducing inflammation. Our study shows what works best for SH-aPDT, while also demonstrating SH-aPDT advantages to treatment of periodontitis including no bacterial selectivity (Gram + or Gram -) and preventing the development of bacterial resistance.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}