{"title":"Dihydroquercetin (DHQ) ameliorates LPS-induced acute lung injury by regulating macrophage M2 polarization through IRF4/miR-132-3p/FBXW7 axis","authors":"Chen Li, Jianhua Liu, Changhong Zhang, Liang Cao, Fang Zou, Zhihua Zhang","doi":"10.1016/j.pupt.2023.102249","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><span>Acute lung injury (ALI) is a common complication of </span>sepsis<span>. Dihydroquercetin (DHQ) has been found to attenuate lipopolysaccharide (LPS)-induced inflammation. However, the effect of DHQ on LPS-challenged ALI remains unclear.</span></p></div><div><h3>Methods</h3><p><span>Pulmonary HE and TUNEL staining<span><span> and lung wet/dry ratio were detected in LPS-treated Balb/c mice. IL-1β, IL-6 and TNF-α levels were determined utilizing ELISA assay. RAW264.7 cell </span>apoptosis<span><span> and macrophage markers (CD86, CD206) were tested using flow cytometry. TC-1 viability was analyzed by MTT assay. </span>Western blot<span><span> measured protein expression of macrophage markers. Interactions of miR-132–3p, </span>IRF4 and FBXW7 were explored utilizing </span></span></span></span>ChIP<span>, RNA pull-down and dual luciferase reporter assays.</span></p></div><div><h3>Results</h3><p>DHQ alleviated histopathological change, pulmonary edema<span><span> and apoptosis in LPS-treated mice. DHQ affected LPS-induced M2 macrophage polarization<span> and TC-1 cell injury-related indicators, such as decreased cell activity, decreased LDH levels, and increased apoptosis. </span></span>LPS inhibited IRF4 and miR-132–3p expression, activated Notch pathway and increased FBXW7 level, which were overturned by DHQ. IRF4 transcriptionally activated miR-132–3p expression. FBXW7 was a downstream target of miR-132–3p.</span></p></div><div><h3>Conclusion</h3><p>DHQ alleviated LPS-induced lung injury through promoting macrophage M2 polarization via IRF4/miR-132–3p/FBXW7 axis, which provides a new therapeutic strategy for ALI.</p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"83 ","pages":"Article 102249"},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553923000615","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 1
Abstract
Background
Acute lung injury (ALI) is a common complication of sepsis. Dihydroquercetin (DHQ) has been found to attenuate lipopolysaccharide (LPS)-induced inflammation. However, the effect of DHQ on LPS-challenged ALI remains unclear.
Methods
Pulmonary HE and TUNEL staining and lung wet/dry ratio were detected in LPS-treated Balb/c mice. IL-1β, IL-6 and TNF-α levels were determined utilizing ELISA assay. RAW264.7 cell apoptosis and macrophage markers (CD86, CD206) were tested using flow cytometry. TC-1 viability was analyzed by MTT assay. Western blot measured protein expression of macrophage markers. Interactions of miR-132–3p, IRF4 and FBXW7 were explored utilizing ChIP, RNA pull-down and dual luciferase reporter assays.
Results
DHQ alleviated histopathological change, pulmonary edema and apoptosis in LPS-treated mice. DHQ affected LPS-induced M2 macrophage polarization and TC-1 cell injury-related indicators, such as decreased cell activity, decreased LDH levels, and increased apoptosis. LPS inhibited IRF4 and miR-132–3p expression, activated Notch pathway and increased FBXW7 level, which were overturned by DHQ. IRF4 transcriptionally activated miR-132–3p expression. FBXW7 was a downstream target of miR-132–3p.
Conclusion
DHQ alleviated LPS-induced lung injury through promoting macrophage M2 polarization via IRF4/miR-132–3p/FBXW7 axis, which provides a new therapeutic strategy for ALI.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.