Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents.

Emily E K Kopania, Gregg W C Thomas, Carl R Hutter, Sebastian M E Mortimer, Colin M Callahan, Emily Roycroft, Anang S Achmadi, William G Breed, Nathan L Clark, Jacob A Esselstyn, Kevin C Rowe, Jeffrey M Good
{"title":"Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents.","authors":"Emily E K Kopania, Gregg W C Thomas, Carl R Hutter, Sebastian M E Mortimer, Colin M Callahan, Emily Roycroft, Anang S Achmadi, William G Breed, Nathan L Clark, Jacob A Esselstyn, Kevin C Rowe, Jeffrey M Good","doi":"10.1101/2023.08.30.555585","DOIUrl":null,"url":null,"abstract":"<p><p>It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass, presumably reflecting reduced sperm competition. Several sperm traits were associated with relative testes mass, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller relative testes mass due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction, and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.30.555585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass, presumably reflecting reduced sperm competition. Several sperm traits were associated with relative testes mass, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller relative testes mass due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction, and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多种鼠类啮齿动物精子形态高度不同的跨物种雄性生殖的分子进化。
精子竞争可推动雄性生殖特征的快速进化,但精子竞争强度的变化如何影响不同支系的表型和分子多样性,目前仍不清楚。旧世界小鼠和大鼠(鼠亚科)是一种快速辐射动物,在精子形态和产生方面表现出惊人的多样性。我们结合表型和序列数据,建立了 78 个鼠类物种的生殖性状和基因进化模型。我们发现了几种睾丸相对质量较小的变化,这种性状反映了精子竞争的减少。一些精子性状与相对睾丸质量相关,这表明交配系统的进化可能会选择与精子竞争能力相关的趋同性状。精子发生蛋白的分子进化速率也与相对睾丸质量相关,但其方向出乎意料。我们预测精子竞争会导致相对睾丸质量大的物种之间的快速分化,但却发现许多精子发生基因在相对睾丸质量较小的物种中进化得更快,这是由于放松了净化选择。虽然一些生殖基因是在正选择下进化的,但在睾丸较小的物种中,松弛选择在快速进化中发挥了更大的作用。我们的研究结果表明,性选择可以施加强大的净化选择,从而影响雄性生殖的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Palatal segment contributions to midfacial anterior-posterior growth. Membrane potential mediates the cellular response to mechanical pressure. Actin dysregulation induces neuroendocrine plasticity and immune evasion: a vulnerability of small cell lung cancer. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1