{"title":"Can β-catenin, Tenascin and Fascin be potential biomarkers for personalized therapy in Gastric carcinoma?","authors":"Noha Elkady, Amira I Aldesoky, Dina Mohamed Allam","doi":"10.1080/15321819.2023.2251564","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. β-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate β-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by β-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that β-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic β-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.</p>","PeriodicalId":15990,"journal":{"name":"Journal of immunoassay & immunochemistry","volume":" ","pages":"396-417"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunoassay & immunochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15321819.2023.2251564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric carcinoma (GC) is one of the most prevalent cancers worldwide and the fourth leading cause of cancer-related death. Studying the molecular profile of GC is essential for developing targeted therapies. β-catenin, Tenascin, and Fascin expression are among the molecular abnormalities that are claimed to cause GC progression and chemoresistance. Therefore, they could be used as potential therapeutic targets. This study aimed to evaluate β-catenin, Tenascin, and Fascin expression and their possible roles as prognostic and predictive biomarkers in GC using immunohistochemistry. This retrospective study included 84 GC cases. Tissue microarrays were constructed, followed by β-catenin, Tenascin, and Fascin immunostaining. Their expression was assessed and compared with clinicopathological parameters and survival data. The study results revealed that β-catenin nucleocytoplasmic expression, positive Tenascin, and Fascin expressions were detected in 86.9%, 70%, and 59.5% of cases, respectively. Their expression was significantly associated with poor prognostic parameters, such as deeper tumor invasion, lymph node metastasis, advanced pathological stage, vascular invasion, positive omental nodules, poor response to chemotherapy, and short overall survival. Hence, nucleocytoplasmic β-catenin expression together with Tenascin and Fascin positivity can be potential prognostic and predictive markers, and they can be used as therapeutic targets for GC.
期刊介绍:
The Journal of Immunoassay & Immunochemistry is an international forum for rapid dissemination of research results and methodologies dealing with all aspects of immunoassay and immunochemistry, as well as selected aspects of immunology. They include receptor assay, enzyme-linked immunosorbent assay (ELISA) in all of its embodiments, ligand-based assays, biological markers of ligand-receptor interaction, in vivo and in vitro diagnostic reagents and techniques, diagnosis of AIDS, point-of-care testing, clinical immunology, antibody isolation and purification, and others.