Synthesis, characterization, and antiproliferative evaluation of novel sorafenib analogs for the treatment of hepatocellular carcinoma.

IF 1.4 Q3 Pharmacology, Toxicology and Pharmaceutics Journal of Advanced Pharmaceutical Technology & Research Pub Date : 2023-07-01 Epub Date: 2023-07-28 DOI:10.4103/JAPTR.JAPTR_282_23
Marwan Imad Jihad, Monther Faisal Mahdi
{"title":"Synthesis, characterization, and antiproliferative evaluation of novel sorafenib analogs for the treatment of hepatocellular carcinoma.","authors":"Marwan Imad Jihad,&nbsp;Monther Faisal Mahdi","doi":"10.4103/JAPTR.JAPTR_282_23","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a disease triggered by an uncontrolled proliferation of a cluster of cells, typically originating from a single cell. Sorafenib, a widely utilized pharmaceutical, has limitations in clinical use due to pharmacokinetic challenges and the development of resistance mechanisms. This investigation aimed to synthesize new sorafenib analogs and evaluated their activity against HepG2 cell lines, specifically targeting hepatocellular carcinoma (HCC). Seven sorafenib analogs were synthesized and identified by Fourier-transform infrared spectroscopy and 1H-NMR spectra. Cytotoxicity of the analogs was assessed on the human HepG2 cancer cell line by (3-(4, 5-dimethylthazolk-2-yl)-2, 5-diphenyl tetrazolium bromide) colorimetric assay. Results revealed that among the studied compounds, 4b exhibited the most pronounced cytotoxicity against cancer cells, surpassing even the efficacy of sorafenib. This suggested that small substitutions on the NH moiety play a crucial role in the activity against the human HepG2 liver cancer cell line. These findings provide valuable insights for the development of potential anticancer-targeting HCC.</p>","PeriodicalId":14877,"journal":{"name":"Journal of Advanced Pharmaceutical Technology & Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e4/c3/JAPTR-14-274.PMC10483918.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Pharmaceutical Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/JAPTR.JAPTR_282_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is a disease triggered by an uncontrolled proliferation of a cluster of cells, typically originating from a single cell. Sorafenib, a widely utilized pharmaceutical, has limitations in clinical use due to pharmacokinetic challenges and the development of resistance mechanisms. This investigation aimed to synthesize new sorafenib analogs and evaluated their activity against HepG2 cell lines, specifically targeting hepatocellular carcinoma (HCC). Seven sorafenib analogs were synthesized and identified by Fourier-transform infrared spectroscopy and 1H-NMR spectra. Cytotoxicity of the analogs was assessed on the human HepG2 cancer cell line by (3-(4, 5-dimethylthazolk-2-yl)-2, 5-diphenyl tetrazolium bromide) colorimetric assay. Results revealed that among the studied compounds, 4b exhibited the most pronounced cytotoxicity against cancer cells, surpassing even the efficacy of sorafenib. This suggested that small substitutions on the NH moiety play a crucial role in the activity against the human HepG2 liver cancer cell line. These findings provide valuable insights for the development of potential anticancer-targeting HCC.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于治疗肝细胞癌的新型索拉非尼类似物的合成、表征和抗增殖评价。
癌症是一种由一群细胞不受控制的增殖引发的疾病,通常起源于单个细胞。索拉非尼是一种广泛使用的药物,由于药代动力学挑战和耐药性机制的发展,其临床应用存在局限性。本研究旨在合成新的索拉非尼类似物,并评估其对HepG2细胞系的活性,特别是靶向肝细胞癌(HCC)。合成了7种索拉非尼类似物,并通过傅立叶变换红外光谱和1H-NMR光谱进行了鉴定。类似物在人HepG2癌症细胞系上的细胞毒性通过(3-(4,5-二甲基恶唑-2-基)-2,5-二苯基四唑溴化物)比色测定来评估。结果显示,在所研究的化合物中,4b对癌症细胞表现出最显著的细胞毒性,甚至超过索拉非尼的疗效。这表明NH部分的小取代在抗人HepG2肝癌癌症细胞系的活性中起着至关重要的作用。这些发现为开发潜在的抗癌靶向HCC提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
7.10%
发文量
44
审稿时长
20 weeks
期刊介绍: Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is an Official Publication of Society of Pharmaceutical Education & Research™. It is an international journal published Quarterly. Journal of Advanced Pharmaceutical Technology & Research (JAPTR) is available in online and print version. It is a peer reviewed journal aiming to communicate high quality original research work, reviews, short communications, case report, Ethics Forum, Education Forum and Letter to editor that contribute significantly to further the scientific knowledge related to the field of Pharmacy i.e. Pharmaceutics, Pharmacology, Pharmacognosy, Pharmaceutical Chemistry. Articles with timely interest and newer research concepts will be given more preference.
期刊最新文献
Effect of polar fractions of Marsilea crenata C. Presl. leaves in zebrafish locomotor activity. Effect of quercetin against pilocarpine-induced epilepsy in mice. Effects of subclinical hypothyroidism in type II diabetes mellitus patients on biochemical, coagulation, and fibrinolysis status. Ethanolic extract of Gracilaria spp. Attenuates the inflammatory stage of oral mucosa wound healing: An in vivo study. Green synthesis of gold nanoparticles from the aqueous extracts of Sphagneticola trilobata (L.) J.F Pruski as anti-breast cancer agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1