Insights into the mediation of Ca2+ signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine.

IF 3.6 3区 生物学 Q3 CELL BIOLOGY Journal of Cell Communication and Signaling Pub Date : 2023-12-01 Epub Date: 2023-09-13 DOI:10.1007/s12079-023-00783-6
Zhixiang Lei, Haiyan Wang, Yiwen Zhai, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang
{"title":"Insights into the mediation of Ca<sup>2+</sup> signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine.","authors":"Zhixiang Lei, Haiyan Wang, Yiwen Zhai, Minglu Sun, Si Chen, Panfeng Yin, Xianchun Wang","doi":"10.1007/s12079-023-00783-6","DOIUrl":null,"url":null,"abstract":"<p><p>Latroeggtoxin-VI (LETX-VI) is an active protein and was previously demonstrated to have effects on the synthesis and release of dopamine. Hererin, the involvement of Ca<sup>2+</sup> signaling in the effects of LETX-VI on dopamine was systematically investigated, using PC12 cells as a neuron model. LETX-VI was shown to promote dopamine release from PC12 cells both in the presence and absence of extracellular Ca<sup>2+</sup>; however the presence of extracellular Ca<sup>2+</sup> was favorable for enhancing the promoting effects of LETX-VI on dopamine, because LETX-VI facilitated the influx of extracellular Ca<sup>2+</sup> through the L-type calcium channels in plasma membrane (PM) to increase cytosolic Ca<sup>2+</sup> concentration. LETX-VI was able to penetrate the PM of PC12 cells to act on the Ca<sup>2+</sup> channel proteins IP3Rs and RyRs in the endoplasm reticulum (ER) membrane, opening the Ca<sup>2+</sup> channels and promoting the release of ER Ca<sup>2+</sup> to elevate cytosolic Ca<sup>2+</sup> level. With the help of intracellular Ca<sup>2+</sup> chelator BAPTA, the elevated cytosolic Ca<sup>2+</sup> level was proven to play crucial role for the enhanced promoting effects of LETX-VI on dopamine. Taken together, LETX-VI is able to open the Ca<sup>2+</sup> channels in both PM and ER membrane simultaneously to facilitate extracellular Ca<sup>2+</sup> influx and ER Ca<sup>2+</sup> release, and thus increases the cytosolic Ca<sup>2+</sup> concentration to enhance the promoting effects on the synthesis and release of dopamine.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":" ","pages":"1309-1321"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10713917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12079-023-00783-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Latroeggtoxin-VI (LETX-VI) is an active protein and was previously demonstrated to have effects on the synthesis and release of dopamine. Hererin, the involvement of Ca2+ signaling in the effects of LETX-VI on dopamine was systematically investigated, using PC12 cells as a neuron model. LETX-VI was shown to promote dopamine release from PC12 cells both in the presence and absence of extracellular Ca2+; however the presence of extracellular Ca2+ was favorable for enhancing the promoting effects of LETX-VI on dopamine, because LETX-VI facilitated the influx of extracellular Ca2+ through the L-type calcium channels in plasma membrane (PM) to increase cytosolic Ca2+ concentration. LETX-VI was able to penetrate the PM of PC12 cells to act on the Ca2+ channel proteins IP3Rs and RyRs in the endoplasm reticulum (ER) membrane, opening the Ca2+ channels and promoting the release of ER Ca2+ to elevate cytosolic Ca2+ level. With the help of intracellular Ca2+ chelator BAPTA, the elevated cytosolic Ca2+ level was proven to play crucial role for the enhanced promoting effects of LETX-VI on dopamine. Taken together, LETX-VI is able to open the Ca2+ channels in both PM and ER membrane simultaneously to facilitate extracellular Ca2+ influx and ER Ca2+ release, and thus increases the cytosolic Ca2+ concentration to enhance the promoting effects on the synthesis and release of dopamine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洞察 Ca2+ 信号在 LETX-VI 对多巴胺合成和释放的促进作用中的中介作用。
Latroeggtoxin-VI(LETX-VI)是一种活性蛋白,以前曾被证实对多巴胺的合成和释放有影响。本研究以 PC12 细胞为神经元模型,系统地研究了 Ca2+ 信号在 LETX-VI 对多巴胺的影响中的参与作用。研究表明,LETX-VI 在细胞外 Ca2+ 存在和不存在的情况下都能促进 PC12 细胞释放多巴胺;但细胞外 Ca2+ 的存在有利于增强 LETX-VI 对多巴胺的促进作用,因为 LETX-VI 能促进细胞外 Ca2+ 通过质膜(PM)上的 L 型钙通道流入,从而增加细胞膜 Ca2+ 浓度。LETX-VI 能够穿透 PC12 细胞的质膜,作用于内质网(ER)膜上的 Ca2+ 通道蛋白 IP3Rs 和 RyRs,打开 Ca2+ 通道,促进 ER Ca2+ 释放,从而提高细胞膜 Ca2+ 浓度。在细胞内 Ca2+ 螯合剂 BAPTA 的帮助下,细胞膜 Ca2+ 水平的升高被证明是 LETX-VI 增强促进多巴胺作用的关键因素。综上所述,LETX-VI 能够同时打开 PM 和 ER 膜上的 Ca2+ 通道,促进细胞外 Ca2+ 的流入和 ER Ca2+ 的释放,从而提高细胞膜 Ca2+ 浓度,增强对多巴胺合成和释放的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
4.90%
发文量
40
期刊介绍: The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies. Research manuscripts can be published under two different sections : In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research. In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.
期刊最新文献
Tert-butyl hydroperoxide induces trabecular meshwork cells injury through ferroptotic cell death Report on the 12th international workshop on the CCN family of genes, Oslo, June 20–23, 2024 Association for research on biosignaling and communication first world conference on cellular communication and signaling CD99 contributes to the EWS::FLI1 transcriptome by specifically affecting FOXM1-targets involved in the G2/M cell cycle phase, thus influencing the Ewing sarcoma genetic landscape Elevated reactive aggression in forebrain-specific Ccn2 knockout mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1