Mechanistic aspects of binding of telomeric over parallel G-quadruplex with novel synthesized Knoevenagel condensate 4-nitrobenzylidene curcumin

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Recognition Pub Date : 2023-05-21 DOI:10.1002/jmr.3041
Padma Sharma, Niki Sweta Jha
{"title":"Mechanistic aspects of binding of telomeric over parallel G-quadruplex with novel synthesized Knoevenagel condensate 4-nitrobenzylidene curcumin","authors":"Padma Sharma,&nbsp;Niki Sweta Jha","doi":"10.1002/jmr.3041","DOIUrl":null,"url":null,"abstract":"<p>The introduction of small ligands to stabilise G-quadruplex DNA structures is a promising method for developing anti-cancer drugs. It is challenging to stabilise the G-quadruplex structure, which can take on a variety of topologies and is known to inhibit specific biological processes. To achieve this, 4-nitrobenzylidene curcumin (NBC), the Knoevenagel condensate of curcumin, was synthesized and characterized. The interaction of 4-nitrobenzylidene curcumin with parallel (c-MYC) and hybrid (H-telo) G-quadruplex structures was studied by circular dichroism (CD) spectroscopy, UV-thermal melting, differential scanning calorimetry (DSC), absorption spectroscopy, fluorescence spectroscopy and docking studies. The outcome demonstrates that, in a K<sup>+</sup>-rich solution, the ligand NBC can stabilise the parallel c-MYC and hybrid H-telo G-quadruplex structures by 5°C. The absorption and fluorescence studies show that the ligand NBC binds to c-MYC and H-telo with affinities of 0.3 × 10<sup>6</sup> M<sup>−1</sup> and 0.6 × 10<sup>6</sup> M<sup>−1</sup>, respectively. The ligand interacts with the terminal G-quartet of the quadruplex structure via intercalation and the groove mode of binding, well supported by docking studies as well. NBC has more potent antioxidant activity as compared to the curcumin and 4-nitro benzaldehyde. It was also found to have higher cytotoxic activity towards cell line such as HeLa and MCF-7, while less cytotoxic for healthy Vero cells. Overall, the results show that the Knoevenagel product of curcumin can work better as a G-quadruplex binder and could be used as a possible treatment.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":"36 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Recognition","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmr.3041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of small ligands to stabilise G-quadruplex DNA structures is a promising method for developing anti-cancer drugs. It is challenging to stabilise the G-quadruplex structure, which can take on a variety of topologies and is known to inhibit specific biological processes. To achieve this, 4-nitrobenzylidene curcumin (NBC), the Knoevenagel condensate of curcumin, was synthesized and characterized. The interaction of 4-nitrobenzylidene curcumin with parallel (c-MYC) and hybrid (H-telo) G-quadruplex structures was studied by circular dichroism (CD) spectroscopy, UV-thermal melting, differential scanning calorimetry (DSC), absorption spectroscopy, fluorescence spectroscopy and docking studies. The outcome demonstrates that, in a K+-rich solution, the ligand NBC can stabilise the parallel c-MYC and hybrid H-telo G-quadruplex structures by 5°C. The absorption and fluorescence studies show that the ligand NBC binds to c-MYC and H-telo with affinities of 0.3 × 106 M−1 and 0.6 × 106 M−1, respectively. The ligand interacts with the terminal G-quartet of the quadruplex structure via intercalation and the groove mode of binding, well supported by docking studies as well. NBC has more potent antioxidant activity as compared to the curcumin and 4-nitro benzaldehyde. It was also found to have higher cytotoxic activity towards cell line such as HeLa and MCF-7, while less cytotoxic for healthy Vero cells. Overall, the results show that the Knoevenagel product of curcumin can work better as a G-quadruplex binder and could be used as a possible treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平行G-四链体上端粒与新合成的Knoevenagel缩合物4-硝基亚苄基姜黄素结合的机制方面。
引入小配体来稳定G-quadruplex DNA结构是开发抗癌药物的一种很有前途的方法。稳定G-四链体结构是一项挑战,它可以呈现各种拓扑结构,并且已知会抑制特定的生物过程。为此,合成并表征了姜黄素的Knoevenagel缩合物4-硝基亚苄基姜黄素(NBC)。采用圆二色谱(CD)、紫外热熔解、差示扫描量热法(DSC)、吸收光谱、荧光光谱和对接研究方法,研究了4-硝基亚苄基姜黄素与平行(c-MYC)和杂化(H-telo)G-四链体结构的相互作用。结果表明,在富含K+的溶液中,配体NBC可以稳定平行的c-MYC和杂交的H-telo-G-quadruplex结构5°c。吸收和荧光研究表明,配体NBC与c-MYC和H-telo结合,亲和力为0.3 × 106 M-1和0.6 × 106 M-1。配体通过嵌入和结合的凹槽模式与四链体结构的末端G-四元体相互作用,对接研究也很好地支持了这一点。和姜黄素和4-硝基苯甲醛相比,NBC具有更强的抗氧化活性。还发现它对细胞系如HeLa和MCF-7具有更高的细胞毒性活性,而对健康Vero细胞具有更低的细胞毒性。总之,研究结果表明,姜黄素的Knoevenagel产物可以更好地作为G-四链体粘合剂,并可作为一种可能的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Recognition
Journal of Molecular Recognition 生物-生化与分子生物学
CiteScore
4.60
自引率
3.70%
发文量
68
审稿时长
2.7 months
期刊介绍: Journal of Molecular Recognition (JMR) publishes original research papers and reviews describing substantial advances in our understanding of molecular recognition phenomena in life sciences, covering all aspects from biochemistry, molecular biology, medicine, and biophysics. The research may employ experimental, theoretical and/or computational approaches. The focus of the journal is on recognition phenomena involving biomolecules and their biological / biochemical partners rather than on the recognition of metal ions or inorganic compounds. Molecular recognition involves non-covalent specific interactions between two or more biological molecules, molecular aggregates, cellular modules or organelles, as exemplified by receptor-ligand, antigen-antibody, nucleic acid-protein, sugar-lectin, to mention just a few of the possible interactions. The journal invites manuscripts that aim to achieve a complete description of molecular recognition mechanisms between well-characterized biomolecules in terms of structure, dynamics and biological activity. Such studies may help the future development of new drugs and vaccines, although the experimental testing of new drugs and vaccines falls outside the scope of the journal. Manuscripts that describe the application of standard approaches and techniques to design or model new molecular entities or to describe interactions between biomolecules, but do not provide new insights into molecular recognition processes will not be considered. Similarly, manuscripts involving biomolecules uncharacterized at the sequence level (e.g. calf thymus DNA) will not be considered.
期刊最新文献
Dissecting the COVID-19 Immune Response: Unraveling the Pathways of Innate Sensing and Response to SARS-CoV-2 Structural Proteins Inhibitory Potential and Binding Thermodynamics of Scyllatoxin-Based BH3 Domain Mimetics Targeting Repressor BCL2 Proteins Issue Information A Serum D-Fucose Binding Lectin With B Cell Mitogenic Activity From the Grub of the Darkling Beetle Zophobas morio Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1